期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于COOT算法的VMD-HPCA-GRU超短期风电功率预测
1
作者 何星月 杨靖 +2 位作者 朱兆强 杨斌 覃涛 《北京航空航天大学学报》 北大核心 2025年第5期1716-1725,共10页
为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模... 为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模态分解子模态数,从而将具有强非线性的原始功率序列分解为一组相对平稳的子模态。其次,利用灰色关联度分析计算高维气象特征与功率序列的关联度值并进行排序分层,利用主成分分析提取各分层特征变量的第一主成分,实现对高维气象特征的降维。最后,引入COOT算法对门控循环单元预测模型的超参数进行优化,加速模型收敛速度,提高模型预测精度。对贵州某风电场的实测数据进行仿真分析,结果表明:相较于传统GRU模型的预测结果,所提方法的均方根误差、平均绝对误差、平均绝对百分误差分别下降了67.41%、72.25%、45.69%,且预测精度高于其他4种组合预测模型,有效提高了超短期风电功率预测精度。 展开更多
关键词 风电功率预测 变分模态分解 分层主成分分析 COOT算法 门控循环单元
在线阅读 下载PDF
空谱特征分层融合的高光谱图像特征提取 被引量:7
2
作者 姚本佐 何芳 《国土资源遥感》 CSCD 北大核心 2019年第3期59-64,共6页
利用基于光谱维的特征提取方法将原始高光谱图像数据降到一定维数,对降维后的数据采用多尺度自适应加权滤波器(adaptive weighted filters,AWF)进行滤波,将在所有尺度上得到的滤波结果分层融合为新的图像,设计了分层融合框架,有效提取... 利用基于光谱维的特征提取方法将原始高光谱图像数据降到一定维数,对降维后的数据采用多尺度自适应加权滤波器(adaptive weighted filters,AWF)进行滤波,将在所有尺度上得到的滤波结果分层融合为新的图像,设计了分层融合框架,有效提取出了高光谱图像中重要的空谱特征,从而提高了分类精度。又将主成分分析(principal component analysis,PCA)算法融入到该框架中,提出了分层融合-主成分分析(hierarchical fusion principal component analysis,HF-PCA)算法。该方法不仅降低了波段间的冗余性,而且削弱了样本的类内差异性,提高了高光谱图像的分类精度。在Indian Pines和Salinas数据库上的实验结果表明,即使在训练样本数量较少的情况下,由HF- PCA算法得到的分类精度明显高于其他算法,2种数据总体分类精度的最大值分别为86.73%和95.01%,有效提高了高光谱图像的分类精度。 展开更多
关键词 空谱特征 分层融合 分层融合-成分分析 高光谱图像分类
在线阅读 下载PDF
基于可视化传感器阵列系统的肺癌标志物快速检测研究 被引量:4
3
作者 侯长军 宋坤 +3 位作者 彭剑 霍丹群 董家乐 黄承洪 《传感器与微系统》 CSCD 北大核心 2012年第9期57-59,63,共4页
肺癌的早期快速诊断对于肺癌患者的治疗至关重要。针对肺癌患者所呼出的特定标志物,建立可视化传感器阵列系统,对4种肺癌标志物进行了实验研究。采用分层聚类分析、主成分分析的统计学方法对检测结果进行分析。对不同肺癌标志物、不同... 肺癌的早期快速诊断对于肺癌患者的治疗至关重要。针对肺癌患者所呼出的特定标志物,建立可视化传感器阵列系统,对4种肺癌标志物进行了实验研究。采用分层聚类分析、主成分分析的统计学方法对检测结果进行分析。对不同肺癌标志物、不同体积分数的样本在聚类分析中可以正确分类,且结构相似体积分数相近的样本能优先聚到一簇。利用主成分分析获得的前2个主成分所代表的肺癌标志物72.0%的信息量即可以实现不同类标志物样本区分。研究表明:这种可视化传感器阵列系统是一种快速有效的检测识别肺癌标志物的方法。 展开更多
关键词 可视化传感器阵列系统 肺癌标志物 检测 分层聚类分析:成分分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部