提出一种新的稀疏谱聚类算法——基于PAM算法的HSSPAM聚类(high-dimensional sparse spectral clustering based on partitioning around medoids).该算法先用高相关系数过滤及主成分分析降维方法以有效减小甚至消除维度灾难对高维数据...提出一种新的稀疏谱聚类算法——基于PAM算法的HSSPAM聚类(high-dimensional sparse spectral clustering based on partitioning around medoids).该算法先用高相关系数过滤及主成分分析降维方法以有效减小甚至消除维度灾难对高维数据处理的影响,再采用Minkowski距离指数变换函数及稀疏化算法来构建分块对角矩阵以重新解释样本之间的相似度;然后构造新颖的拉普拉斯矩阵以实现进一步压缩数据矩阵,进而结合partitioning around medoids(PAM)算法取代传统谱聚类中的K-means算法对特征向量聚类以提高算法的聚类稳定性;最后引入高维基因数据设计了实验,并以不同的聚类评价指标来衡量该研究算法的聚类质量,实验结果表明,新算法能够更精确、更稳定地对基因数据聚类.展开更多
针对正交时频空(Orthogonal Time Frequency Space,OTFS)调制系统采用矩形窗函数时,信道矩阵结构复杂导致的鲁棒性差的问题,提出了一种基于时域处理和酉近似消息传递的检测算法。该算法首先添加循环前缀,将时域信道转换为分块对角矩阵;...针对正交时频空(Orthogonal Time Frequency Space,OTFS)调制系统采用矩形窗函数时,信道矩阵结构复杂导致的鲁棒性差的问题,提出了一种基于时域处理和酉近似消息传递的检测算法。该算法首先添加循环前缀,将时域信道转换为分块对角矩阵;然后应用酉变换和近似消息传递建立迭代检测算法。仿真结果表明,所提检测算法能够在不增加复杂度的条件下有效提升检测精度和鲁棒性,特别是存在信道编码的条件下表现出2 dB的性能增益,使得该算法更适用于杂散多径、高速移动等环境,具有较高的应用价值。展开更多
文摘提出一种新的稀疏谱聚类算法——基于PAM算法的HSSPAM聚类(high-dimensional sparse spectral clustering based on partitioning around medoids).该算法先用高相关系数过滤及主成分分析降维方法以有效减小甚至消除维度灾难对高维数据处理的影响,再采用Minkowski距离指数变换函数及稀疏化算法来构建分块对角矩阵以重新解释样本之间的相似度;然后构造新颖的拉普拉斯矩阵以实现进一步压缩数据矩阵,进而结合partitioning around medoids(PAM)算法取代传统谱聚类中的K-means算法对特征向量聚类以提高算法的聚类稳定性;最后引入高维基因数据设计了实验,并以不同的聚类评价指标来衡量该研究算法的聚类质量,实验结果表明,新算法能够更精确、更稳定地对基因数据聚类.
文摘针对正交时频空(Orthogonal Time Frequency Space,OTFS)调制系统采用矩形窗函数时,信道矩阵结构复杂导致的鲁棒性差的问题,提出了一种基于时域处理和酉近似消息传递的检测算法。该算法首先添加循环前缀,将时域信道转换为分块对角矩阵;然后应用酉变换和近似消息传递建立迭代检测算法。仿真结果表明,所提检测算法能够在不增加复杂度的条件下有效提升检测精度和鲁棒性,特别是存在信道编码的条件下表现出2 dB的性能增益,使得该算法更适用于杂散多径、高速移动等环境,具有较高的应用价值。