期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
基于伪监督注意力短期记忆与多尺度去伪影网络的图像分块压缩感知 被引量:3
1
作者 李俊辉 侯兴松 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第2期472-480,共9页
基于深度展开网络的分块压缩感知(BCS)方法,在迭代去块伪影时通常会同时去除部分信号和保留部分块伪影,不利于信号恢复。为了改善重建性能,在学习去噪的迭代阈值(LDIT)算法基础上,该文提出基于伪监督注意力短期记忆与多尺度去伪影网络(M... 基于深度展开网络的分块压缩感知(BCS)方法,在迭代去块伪影时通常会同时去除部分信号和保留部分块伪影,不利于信号恢复。为了改善重建性能,在学习去噪的迭代阈值(LDIT)算法基础上,该文提出基于伪监督注意力短期记忆与多尺度去伪影网络(MSD-Net)的图像BCS迭代方法(PSASM-MD)。首先,在每步迭代中,利用残差网络并行地对每个图像子块单独去噪后再拼接。然后,对拼接后的图像采用含有伪监督注意力模块(PSAM)的MSD-Net进行特征提取,以更好地去除块伪影以提高重建性能。其中,PSAM被用于从含有块伪影的残差中抽取部分有用信号,并传递到下一步迭代实现短期记忆,以尽量避免去除有用信号。实验结果表明,该文方法相比现有先进的同类BCS方法在主观视觉感知和客观评价指标上均取得了更优的结果。 展开更多
关键词 分块压缩感知 短期记忆 图像去伪影 深度展开网络
在线阅读 下载PDF
图像分块压缩感知中的自适应测量率设定方法 被引量:6
2
作者 李然 干宗良 +2 位作者 崔子冠 武明虎 朱秀昌 《通信学报》 EI CSCD 北大核心 2014年第7期77-85,共9页
传统的图像分块压缩感知(BCS,block compressed sensing)以相同的测量率对各块进行测量,但由于图像的空间特性不同,在重构图像时出现了块效应。通过自适应为各块设定不同的测量率,该问题可得到有效的解决。然而,已有的自适应测量率设定... 传统的图像分块压缩感知(BCS,block compressed sensing)以相同的测量率对各块进行测量,但由于图像的空间特性不同,在重构图像时出现了块效应。通过自适应为各块设定不同的测量率,该问题可得到有效的解决。然而,已有的自适应测量率设定法需要在采集端获得原始数字图像,这在实际的压缩成像(CI,compressive imaging)设备中无法实现。为了克服这一缺陷,提出了一种更易于通过硬件实现的自适应测量率设定法。该方法利用在采集端可获得的CS测量值直接在测量域中估计各图像块的样本方差,再根据各块样本方差自适应地为每块设定测量率并实现码率控制。仿真实验结果表明,该方案重构图像的质量优于非自适应方案,但由于测量域估计块样本方差存在偏差,使其与直接利用块样本方差真实值的自适应方案相比,仍具有一定差距。 展开更多
关键词 分块压缩感知 压缩成像 自适应测量 块样本方差
在线阅读 下载PDF
基于纹理自适应全变分滤波的图像分块压缩感知优化算法 被引量:12
3
作者 王玥 周城 +1 位作者 熊承义 舒振宇 《计算机科学》 CSCD 北大核心 2016年第2期307-310,315,共5页
图像分块压缩感知重构模型通过分块方式解决了压缩感知中观测矩阵过大带来的计算复杂度较高和存储空间较大的问题,但分块重构时会产生块效应,其需要通过去块效应滤波加以消除。现有的滤波方法并未考虑图像纹理细节恢复问题,造成了重构... 图像分块压缩感知重构模型通过分块方式解决了压缩感知中观测矩阵过大带来的计算复杂度较高和存储空间较大的问题,但分块重构时会产生块效应,其需要通过去块效应滤波加以消除。现有的滤波方法并未考虑图像纹理细节恢复问题,造成了重构质量的降低。为解决该问题,首先提出了一种基于灰度熵的纹理自适应采样方法。随后分析了分块压缩感知中块效应的产生和经自适应采样后块效应得到缓解的原因,并将全变分滤波引入到图像分块压缩感知平滑投影迭代重构过程之中,提出了一种基于图像分块纹理信息的双树离散小波硬阈值滤波和全变分滤波的自适应加权滤波模型,用其取代原平滑投影迭代算法的滤波过程,在自适应采样缓解块效应的基础上,更有效地保存图像的细节信息。仿真实验表明,与多种已有方案相比,该方案可显著提升重建图像的主客观质量,同时可有效保留图像的纹理细节。 展开更多
关键词 分块压缩感知 自适应采样率 全变分滤波 去块效应滤波
在线阅读 下载PDF
基于分块压缩感知的图像全局重构模型 被引量:12
4
作者 李然 干宗良 朱秀昌 《信号处理》 CSCD 北大核心 2012年第10期1416-1422,共7页
已有的基于分块压缩感知(Block Compressed Sensing,Block CS)的图像重构模型采用相同的测量矩阵以块×块的方式获取数据,解决了传统CS方法中测量矩阵所需存储量较大的问题,但由于采用分块重构,没有考虑到图像的全局稀疏度,出现了... 已有的基于分块压缩感知(Block Compressed Sensing,Block CS)的图像重构模型采用相同的测量矩阵以块×块的方式获取数据,解决了传统CS方法中测量矩阵所需存储量较大的问题,但由于采用分块重构,没有考虑到图像的全局稀疏度,出现了大量的块效应。本文分析了图像分块重构产生块效应的三个主要原因:块稀疏度不均匀、频谱泄漏和块尺寸受限,提出了一种基于Block CS的图像全局重构模型。该模型在编码端采用高斯随机矩阵逐块作非相关测量;在解码端,引入排序算子,重新构造测量矩阵,该测量矩阵既适合于进行全局重构,又适合于分块测量的CS观测值,并仍与图像的稀疏矩阵高度不相关,所以其可充分利用图像的全局稀疏度进行CS重构。仿真实验表明,所提出的全局重构模型有效地消除了块效应现象,并且对块尺寸的变化有较强的鲁棒性。 展开更多
关键词 分块压缩感知 块稀疏度 分块重构 全局稀疏度 全局重构 块效应
在线阅读 下载PDF
基于灰度共生矩阵的图像自适应分块压缩感知方法 被引量:9
5
作者 杜秀丽 张薇 +2 位作者 顾斌斌 陈波 邱少明 《计算机科学》 CSCD 北大核心 2018年第8期277-282,共6页
分块压缩感知的提出很好地弥补了大尺寸图像占用资源多、重构耗时长等不足,但重构后的图像存在明显的块效应。针对现有图像纹理复杂度分析不够准确,导致自适应采样率分配后块效应降低不理想的问题,提出了一种基于灰度共生矩阵的图像自... 分块压缩感知的提出很好地弥补了大尺寸图像占用资源多、重构耗时长等不足,但重构后的图像存在明显的块效应。针对现有图像纹理复杂度分析不够准确,导致自适应采样率分配后块效应降低不理想的问题,提出了一种基于灰度共生矩阵的图像自适应分块压缩感知方法。该方法通过共生矩阵分析图像的纹理特性,自适应分配采样率,在总采样率不变的前提下使纹理复杂度高的子块获得较高的采样率,纹理复杂度低的子块获得较低的采样率,并用SAMP(Sparsity Adaptive Matching Pursuit)算法实现重构。仿真结果显示,所提方法能够有效地解决块效应问题,尤其对于局部图像而言,重构图像的画质得到了明显改善。 展开更多
关键词 分块压缩感知 灰度共生矩阵 采样率
在线阅读 下载PDF
分块压缩感知的全变差正则化重构算法 被引量:5
6
作者 谌德荣 吕海波 +3 位作者 李秋富 宫久路 厉智强 韩肖君 《电子与信息学报》 EI CSCD 北大核心 2019年第9期2217-2223,共7页
针对分块压缩感知(BCS)重建图像质量较差问题,该文提出一种最小化l0范数的分块压缩感知全变差(TV)正则化迭代阈值图像重构算法(BCS-TVIT)。BCS-TVIT算法考虑图像的局部平滑、有界变差等性质,将最小化l0范数与图像的全变差TV正则项结合,... 针对分块压缩感知(BCS)重建图像质量较差问题,该文提出一种最小化l0范数的分块压缩感知全变差(TV)正则化迭代阈值图像重构算法(BCS-TVIT)。BCS-TVIT算法考虑图像的局部平滑、有界变差等性质,将最小化l0范数与图像的全变差TV正则项结合,构建目标函数。针对目标函数中l0范数项和分块测量约束项无法直接优化问题,采用迭代阈值法使重构图像l0范数最小化,并通过凸集投影保证满足约束条件,完成了目标函数的优化求解。实验表明,与基于l0范数最小化的分块压缩感知平滑投影算法(BCS-SPL)相比,BCS-TVIT算法重构图像峰值信噪比提高2 dB,能消除BCS-SPL的“亮斑”效应,且在视觉效果上明显优于BCS-SPL算法;与最小全变差算法相比,BCS-TVIT算法重构图像峰值信噪比提升1 dB,且能降低重构时间约2个数量级。 展开更多
关键词 分块压缩感知 l0范数 全变差 阈值滤波 凸集投影
在线阅读 下载PDF
基于显著性的自适应分块压缩感知算法 被引量:3
7
作者 祝勇俊 刘文波 +1 位作者 沈骞 徐梦莹 《电光与控制》 CSCD 北大核心 2019年第12期28-33,共6页
现实图像的显著性纹理结构可为分块压缩感知算法提供先验信息,优化算法。鉴于此,提出了一种新的基于显著性的自适应分块压缩感知算法。算法所提显著性是以灰度空间相关矩阵和韦伯定律为基础,采用确定性正交对称托普利兹矩阵对目标图像... 现实图像的显著性纹理结构可为分块压缩感知算法提供先验信息,优化算法。鉴于此,提出了一种新的基于显著性的自适应分块压缩感知算法。算法所提显著性是以灰度空间相关矩阵和韦伯定律为基础,采用确定性正交对称托普利兹矩阵对目标图像进行测量,提出了均熵最小化自适应分块策略、角二阶矩最大化块向量生成方式以及合成特征依据下的自适应采样率设置,并结合不同重构算法进行了分析和验证。实验表明,所提算法策略在多项指标上较传统算法具有更好的表现,易于硬件实现,针对不同重构算法和测试图像具有普适性和稳定性。 展开更多
关键词 显著性 自适应分块压缩感知 灰度空间相关矩阵 合成特征
在线阅读 下载PDF
图像分块压缩感知中的自适应粒重建算法 被引量:2
8
作者 李然 孙艳歌 +1 位作者 张清洁 刘宏兵 《数据采集与处理》 CSCD 北大核心 2018年第1期151-160,共10页
在图像分块压缩感知(Block compressed sensning,BCS)框架下,基于平滑投影Landweber迭代的重建算法能以低计算复杂度确保良好率失真性能,尤其是采用主成分分析(Principle component analysis,PCA)作自适应硬阈值收缩。然而,在PCA学习过... 在图像分块压缩感知(Block compressed sensning,BCS)框架下,基于平滑投影Landweber迭代的重建算法能以低计算复杂度确保良好率失真性能,尤其是采用主成分分析(Principle component analysis,PCA)作自适应硬阈值收缩。然而,在PCA学习过程中忽略了图像局部结构特性平稳,会影响Landweber迭代重建性能的提升。针对该问题,本文采用粒计算(Granular computing,Gr C)理论,根据图像子块结构特性将图像分解为若干粒,再实施PCA学习各粒的稀疏表示基底,并对粒内子块硬阈值收缩去噪。由于粒内图像子块具有平稳的结构特性,可有效改善硬阈值收缩性能。实验结果表明,与传统算法相比,本文算法重建图像的整体客观质量较优,且可更好地保护边缘与纹理等重要细节,主观视觉质量良好,与此同时,保证了较低的重建计算复杂度。 展开更多
关键词 分块压缩感知 Landweber迭代 粒计算 主成分分析 硬阈值收缩
在线阅读 下载PDF
基于改进的分块压缩感知红外图像重建 被引量:1
9
作者 秦翰林 韩姣姣 +3 位作者 延翔 周慧鑫 李佳 曾庆杰 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第12期69-72,共4页
针对基于压缩感知理论的红外图像重建问题,提出一种基于改进的分块压缩感知红外图像重建方法。该方法首先对原始红外图像进行分块,并对每个子块用相同的观测矩阵进行随机观测,获得少量的观测数据;然后利用谱图小波变换优异的稀疏特性,... 针对基于压缩感知理论的红外图像重建问题,提出一种基于改进的分块压缩感知红外图像重建方法。该方法首先对原始红外图像进行分块,并对每个子块用相同的观测矩阵进行随机观测,获得少量的观测数据;然后利用谱图小波变换优异的稀疏特性,将其引入平滑投影Landweber算法进行迭代优化重建,同时采用混合中值滤波进行处理以增加图像的平滑度和减少块伪影,最后输出满足要求的高质量红外图像。实验结果表明,在相同采样率下,该方法对于不同类型红外图像的重建性能均优于目前广为采用的一些小波压缩感知方法,可获得更高质量的红外图像。 展开更多
关键词 红外成像 图像重建 分块压缩感知 谱图小波 混合中值滤波
在线阅读 下载PDF
带权分块压缩感知的预测目标跟踪算法 被引量:2
10
作者 罗会兰 钟宝康 孔繁胜 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1160-1166,共7页
针对矩形跟踪框在边缘处包含较多背景信息的问题,该文提出一种基于规范化梯度特征的带权分块压缩感知的目标特征提取方法。该方法将压缩感知测量矩阵转化为分块对角矩阵,且根据块的重要程度分配适当的权重,缩小测量矩阵规模,简化特征提... 针对矩形跟踪框在边缘处包含较多背景信息的问题,该文提出一种基于规范化梯度特征的带权分块压缩感知的目标特征提取方法。该方法将压缩感知测量矩阵转化为分块对角矩阵,且根据块的重要程度分配适当的权重,缩小测量矩阵规模,简化特征提取运算,弱化背景干扰。然后将提取的特征输入变先验概率的贝叶斯分类器,变先验概率的分类器充分利用已有的跟踪结果,从一定程度预测了目标的运动方向,减小候选目标的分类歧义性,使得每一帧的分类函数根据以往跟踪结果进行变化,提高了分类的准确度。实验在8个具有常见跟踪难度的序列中测试,并与目前较流行的4种目标跟踪算法在跟踪效果、成功率等方面进行比较,结果从多个角度表明,该文提出的目标跟踪算法具有较高的准确度和稳定性。 展开更多
关键词 目标跟踪 分块压缩感知 贝叶斯分类器 变先验概率
在线阅读 下载PDF
基于DFT基的矿井视频监控图像分块压缩感知方法 被引量:8
11
作者 张帆 闫秀秀 《传感技术学报》 CAS CSCD 北大核心 2017年第1期94-100,共7页
针对矿井视频监控图像受噪声干扰影响大,采用常规的图像采样和压缩方法存在图像模糊和传输时间过长等问题,提出了一种矿井视频监控图像分块压缩感知方法。该方法通过建立矿井视频监控图像分块压缩感知模型,在井下图像采集节点利用稀疏... 针对矿井视频监控图像受噪声干扰影响大,采用常规的图像采样和压缩方法存在图像模糊和传输时间过长等问题,提出了一种矿井视频监控图像分块压缩感知方法。该方法通过建立矿井视频监控图像分块压缩感知模型,在井下图像采集节点利用稀疏随机矩阵进行压缩采样,然后在地面监控中心利用正交匹配追踪(OMP)算法重构图像。研究结果表明,采用本文算法的重构图像误差小、重构时间短,所需信号采样点数少;与扰频Hadamard矩阵相比,采用稀疏随机矩阵和高斯随机矩阵作为观测矩阵对图像信号重构的峰值信噪比(PSNR)提高4 d B^5 d B;本文算法与基于小波基的算法相比,信号重构的PSNR提高1 d B^4 d B,重构时间缩短至少80%以上。 展开更多
关键词 矿井视频监控图像 分块压缩感知 离散傅里叶变换矩阵 正交匹配追踪算法 峰值信噪比
在线阅读 下载PDF
结合图像的局部相关性及非局部相似性的多尺度分块压缩感知 被引量:1
12
作者 陈书贞 李光耀 练秋生 《燕山大学学报》 CAS 2013年第6期547-553,共7页
标准的图像压缩感知算法未利用像素间的邻域结构信息和图像子块的自相似性。针对这一问题,本文将图像分成重叠的图像子块,用冗余字典自适应地稀疏表示图像,同时将用自回归模型表示的图像局部相关性和非局部相似性作为先验知识运用到压... 标准的图像压缩感知算法未利用像素间的邻域结构信息和图像子块的自相似性。针对这一问题,本文将图像分成重叠的图像子块,用冗余字典自适应地稀疏表示图像,同时将用自回归模型表示的图像局部相关性和非局部相似性作为先验知识运用到压缩感知图像重构中,提出了结合图像的局部相关性和非局部相似性的多尺度分块压缩感知方法。实验结果表明,本文算法可以有效提高图像重构的视觉效果和峰值信噪比。 展开更多
关键词 多尺度分块压缩感知 稀疏表示 图像重构 局部相关性 非局部相似性
在线阅读 下载PDF
基于波浪式矩阵置换的稀疏度均衡分块压缩感知算法 被引量:1
13
作者 杜秀丽 张薇 陈波 《计算机应用》 CSCD 北大核心 2018年第12期3541-3546,共6页
基于矩阵置换的分块压缩感知(BCS)引入矩阵置换的策略,使复杂子块和稀疏子块向介于两者中间的稀疏度水平变化,用单一采样率采样时可以减少块效应,但仍存在块间稀疏度均衡效果较差的问题。为了得到更好的重构效果,提出基于波浪式矩阵置... 基于矩阵置换的分块压缩感知(BCS)引入矩阵置换的策略,使复杂子块和稀疏子块向介于两者中间的稀疏度水平变化,用单一采样率采样时可以减少块效应,但仍存在块间稀疏度均衡效果较差的问题。为了得到更好的重构效果,提出基于波浪式矩阵置换的稀疏度均衡BCS(BCS-RMP)算法。首先,在采样前对图像进行矩阵置换的预处理,通过波浪式置换矩阵对图像各子块的稀疏度进行均衡;然后,采用相同的测量矩阵对子块进行采样,在解码侧进行重构;最后,通过波浪式置换逆矩阵对重构结果进行逆变换得到最终的重构图像。仿真结果表明,与现有矩阵置换算法相比,当选择合适的子块大小和采样率时,所提波浪式矩阵置换算法可有效提高图像的重构质量,且能更准确地体现细节信息。 展开更多
关键词 分块压缩感知 矩阵置换 稀疏度 测量矩阵 采样率
在线阅读 下载PDF
一种基于分块压缩感知的鲁棒图像散列算法 被引量:1
14
作者 朱跃生 莫志威 孙自强 《数据采集与处理》 CSCD 北大核心 2016年第5期882-889,共8页
图像散列算法是一种把数字图像映射为一个基于内容的简短二进制比特串的技术,它具有鲁棒性、安全性、紧凑性和单向性等特点,已被广泛应用于图像鉴别与图像识别领域中。本文提出一种基于分块压缩感知的鲁棒图像散列算法,其设计利用了压... 图像散列算法是一种把数字图像映射为一个基于内容的简短二进制比特串的技术,它具有鲁棒性、安全性、紧凑性和单向性等特点,已被广泛应用于图像鉴别与图像识别领域中。本文提出一种基于分块压缩感知的鲁棒图像散列算法,其设计利用了压缩感知采样阶段的计算保密及线性运算的特点。该算法通过对图像进行分块,利用压缩感知理论在密钥的控制下将图像块随机投影为一个测量值向量序列,并把每个测量值向量量化为一个比特,得到一个长度可由分块策略调整的二进制散列值。实验结果表明,本文算法在鲁棒性、安全性和运算速度等方面具有良好的性能。 展开更多
关键词 图像散列 分块压缩感知 随机投影 图像鉴别
在线阅读 下载PDF
彩色图像有效分块压缩感知及联合重构 被引量:2
15
作者 吴延海 马孟新 《计算机工程与设计》 CSCD 北大核心 2014年第7期2453-2457,共5页
为了解决传统CS方法中测量矩阵储存量较大、运算速度慢的问题,考虑到图像变换域信息的波动性,提出了一种观测算法。将彩色图像进行RGB三色分解,对每一种颜色进行合理分块,分别对每种块进行相应的小波变换或walshhadamard变换,最终对3种... 为了解决传统CS方法中测量矩阵储存量较大、运算速度慢的问题,考虑到图像变换域信息的波动性,提出了一种观测算法。将彩色图像进行RGB三色分解,对每一种颜色进行合理分块,分别对每种块进行相应的小波变换或walshhadamard变换,最终对3种颜色进行联合重构。仿真结果表明,该算法使得重构图像质量有了明显提高,验证了该算法的有效性。 展开更多
关键词 彩色图像 分块压缩感知 小波分解 walsh-hadamard变换 联合重构
在线阅读 下载PDF
面向量化分块压缩感知的区域层次化预测编码 被引量:1
16
作者 刘浩 郑浩然 黄荣 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第8期1376-1382,共7页
在量化分块压缩感知的预测编码中,低参考价值的候选者将导致较差的率失真性能。为了高效地降低编码失真,提出了一种基于螺旋逐块扫描的区域层次化预测编码方法。在以同一采样率进行观测后,各块按由内向外的扫描次序进行预测与量化。当... 在量化分块压缩感知的预测编码中,低参考价值的候选者将导致较差的率失真性能。为了高效地降低编码失真,提出了一种基于螺旋逐块扫描的区域层次化预测编码方法。在以同一采样率进行观测后,各块按由内向外的扫描次序进行预测与量化。当前观测矢量从上下文感知候选集中选取与之具有最小误差的反量化矢量,作为其预测矢量;根据层次相关性,所有块被划分到3种区域之一,通过块编码模型为不同区域设定自适应的质量因子,关键区域被赋予较大的质量因子。与现有的预测编码方法相比,所提方法综合利用了矢量之间的空域相关性和层次相关性,实验结果获得了至少0.12 dB的率失真增益。 展开更多
关键词 量化分块压缩感知 预测编码 层次相关性 关键区域 质量因子
在线阅读 下载PDF
Tetrolet域卫星云图分块压缩感知(英文)
17
作者 何艳 金炜 +2 位作者 刘箴 符冉迪 尹曹谦 《光电工程》 CAS CSCD 北大核心 2014年第5期19-27,共9页
针对卫星云图数据量大,但传输通道和存储空间相对狭小的问题,本文提出了一种基于Tetrolet变换的卫星云图分块压缩感知方法。该方法将Tetrolet变换引入压缩感知的稀疏表示环节,以刻画卫星云图细节丰富,纹理复杂的特性,而且将分块压缩感... 针对卫星云图数据量大,但传输通道和存储空间相对狭小的问题,本文提出了一种基于Tetrolet变换的卫星云图分块压缩感知方法。该方法将Tetrolet变换引入压缩感知的稀疏表示环节,以刻画卫星云图细节丰富,纹理复杂的特性,而且将分块压缩感知与平滑投影Landweber迭代方法结合用于云图重构,以提高计算效率。同时,为了进一步提高重构云图的质量,本文对云图的稀疏表示提出了另一种改进方案,首先对原始云图进行拉普拉斯金字塔分解,将得到的低频分量和高频分量分别进行分块及采样,并对低频及高频分量分别进行离散小波变换(DWT)及Tetrolet变换以实现稀疏表示,此不仅可以发挥不同稀疏变换各自的优点,而且充分利用了Tetrolet变换在表示云图方向纹理和边缘等重要信息方面的优势。实验结果表明,在相同采样率下,本文方法的重构结果明显优于直接用Tetrolet,DWT,Contourlet和DCT变换对卫星云图进行稀疏表示的重构结果。 展开更多
关键词 Tetrolet变换 分块压缩感知 稀疏表示 卫星云图
在线阅读 下载PDF
一种基于局部对比度的分块压缩感知多聚焦图像融合算法
18
作者 黄晓生 付思思 曹义亲 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期82-88,共7页
提出了一种有效的基于局部对比度的分块压缩感知多聚焦图像融合算法。首先采用结构随机矩阵对源图像进行分块压缩测量,获得分块压缩测量值;其次,根据块局部对比度选择清晰的块进行初步融合;再通过多数滤波对初步融合结果进行一致性校验... 提出了一种有效的基于局部对比度的分块压缩感知多聚焦图像融合算法。首先采用结构随机矩阵对源图像进行分块压缩测量,获得分块压缩测量值;其次,根据块局部对比度选择清晰的块进行初步融合;再通过多数滤波对初步融合结果进行一致性校验,得到最终的融合结果;最后,通过平滑投影Landweber算法(SPL)重构融合图像。实验结果表明,与目前基于BCS图像融合方法相比,本文所提方法对于多聚焦图像融合,在主观视觉感知以及客观定量指标如信息熵、互信息及平均梯度及算法运行效率等方面均有明显改进。 展开更多
关键词 图像融合 分块压缩感知 局部对比度 一致性验证
在线阅读 下载PDF
基于Contourlet域分块压缩感知的图像融合
19
作者 唐爱平 曹卉 《电信科学》 北大核心 2015年第12期76-82,共7页
针对传统图像融合方法导致纹理细节丢失的现象,提出了一种基于抗混叠移不变Contourlet域的分块压缩感知(block-based compressed sensing,BCS)图像融合算——Contourlet_BCS。把善于表达图像纹理及边缘信息的Contourlet变换引入了压缩... 针对传统图像融合方法导致纹理细节丢失的现象,提出了一种基于抗混叠移不变Contourlet域的分块压缩感知(block-based compressed sensing,BCS)图像融合算——Contourlet_BCS。把善于表达图像纹理及边缘信息的Contourlet变换引入了压缩感知稀疏表示中,同时对分解得到的低频系数采取加权的区域能量融合规则,高频系数采取基于广义高斯分布模型的加权融合规则进行图像系数融合,最后在压缩感知框架下利用带平滑处理的投影Landweber算法重构。实验结果表明,Contourlet_BCS融合效果优于传统方法,融合的图像纹理清晰.边缘细节信息更为丰富。 展开更多
关键词 分块压缩感知 CONTOURLET变换 广义高斯分布 加权融合
在线阅读 下载PDF
边缘和方向估计的自适应多尺度分块压缩感知算法 被引量:7
20
作者 李玉 赵瑞珍 +1 位作者 张凤珍 岑翼刚 《信号处理》 CSCD 北大核心 2015年第4期407-413,共7页
由于多尺度小波变换的分块压缩感知算法(MS-BCS-SPL)将每层子带信息进行分块时,使得每层子带中各子块间的采样率相同;但是,当不同的图像子块含有不同的边缘信息时,对这些子块采用相同的采样率会造成资源分配不合理。因此在MS-BCS-SPL算... 由于多尺度小波变换的分块压缩感知算法(MS-BCS-SPL)将每层子带信息进行分块时,使得每层子带中各子块间的采样率相同;但是,当不同的图像子块含有不同的边缘信息时,对这些子块采用相同的采样率会造成资源分配不合理。因此在MS-BCS-SPL算法的基础上,利用图像块边缘信息的不同和图像块的方向性,将总的采样率自适应分配给各层子带中的各子块,实现多尺度分块压缩感知的自适应采样。实验结果表明,在不同采样率,尤其较低采样率时,该算法不仅比MS-BCS-SPL算法采用了较少的采样数目,节约资源;而且比其可重构较高质量的图像。 展开更多
关键词 分块压缩感知 边缘信息 自适应采样 多尺度小波变换
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部