期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于U⁃net卷积神经网络的多尺度遥感图像分割算法
被引量:
3
1
作者
刘丹英
刘晓燕
《现代电子技术》
2023年第21期44-47,共4页
多尺度遥感图像的非本质特征量较大,不仅易导致图像噪声较大,也增加了图像分割的难度。为充分保留分割后多尺度遥感图像的边缘特征,在U⁃net卷积神经网络下提出新的图像分割算法。以U⁃net卷积神经网络为基网,提取被分割图像特征,获得被...
多尺度遥感图像的非本质特征量较大,不仅易导致图像噪声较大,也增加了图像分割的难度。为充分保留分割后多尺度遥感图像的边缘特征,在U⁃net卷积神经网络下提出新的图像分割算法。以U⁃net卷积神经网络为基网,提取被分割图像特征,获得被分割图像细节信息;计算相邻像素和原始像素特征向量的欧氏距离,结合去噪算法,通过归一化参数处理,建立相似性函数,实现对多尺度遥感图像分割特征增强处理;计算分割框候选偏差值;根据U⁃net卷积神经网络结构确定局部最优合并区域对;计算度量区域的距离,使用全局最优区域合并方法更新分割时间复杂度,实现多尺度遥感图像整体分割。由实验结果可知,该算法能够精准确定指定建筑物位置,并保留建筑物完整边缘细节信息。
展开更多
关键词
U⁃net卷积神经网络
特征提取
相邻像素
相似性函数
分割框候选偏差
多尺度
遥感图像
分割
在线阅读
下载PDF
职称材料
题名
基于U⁃net卷积神经网络的多尺度遥感图像分割算法
被引量:
3
1
作者
刘丹英
刘晓燕
机构
昆明理工大学信息工程与自动化学院
出处
《现代电子技术》
2023年第21期44-47,共4页
文摘
多尺度遥感图像的非本质特征量较大,不仅易导致图像噪声较大,也增加了图像分割的难度。为充分保留分割后多尺度遥感图像的边缘特征,在U⁃net卷积神经网络下提出新的图像分割算法。以U⁃net卷积神经网络为基网,提取被分割图像特征,获得被分割图像细节信息;计算相邻像素和原始像素特征向量的欧氏距离,结合去噪算法,通过归一化参数处理,建立相似性函数,实现对多尺度遥感图像分割特征增强处理;计算分割框候选偏差值;根据U⁃net卷积神经网络结构确定局部最优合并区域对;计算度量区域的距离,使用全局最优区域合并方法更新分割时间复杂度,实现多尺度遥感图像整体分割。由实验结果可知,该算法能够精准确定指定建筑物位置,并保留建筑物完整边缘细节信息。
关键词
U⁃net卷积神经网络
特征提取
相邻像素
相似性函数
分割框候选偏差
多尺度
遥感图像
分割
Keywords
U⁃net convolutional neural network
feature extraction
adjacent pixels
similarity function
segmentation frame candidate deviation
multi scale
remote sensing image
segmentation
分类号
TN911.73-34 [电子电信—通信与信息系统]
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于U⁃net卷积神经网络的多尺度遥感图像分割算法
刘丹英
刘晓燕
《现代电子技术》
2023
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部