期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于分位数半径的动态K-means算法 被引量:5
1
作者 程明畅 刘友波 +1 位作者 张程嘉 马铁丰 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第1期48-55,共8页
K-means算法是应用最广泛的聚类算法之一,但存在明显缺陷:对初始值敏感,还需给定类的数目.层次K-means算法提出将多次k取固定值的K-means运算所得到的中心点作为类的代表,并通过对这些中心点进行层次聚类来得到更好的初始聚类中心,然而... K-means算法是应用最广泛的聚类算法之一,但存在明显缺陷:对初始值敏感,还需给定类的数目.层次K-means算法提出将多次k取固定值的K-means运算所得到的中心点作为类的代表,并通过对这些中心点进行层次聚类来得到更好的初始聚类中心,然而在中心的融合过程中并没有有效利用类的几何信息.从类的几何特征入手,提出一种基于类的分位数半径的动态K-means算法(QRD K-means).此算法在层次K-means的基础上令每次K-means运算的k值变动起来,且又引入了分位数半径的概念,用样本点到类中心距离的分位数作为类的半径,将样本点间的关系简化为各个类的分位数半径与类中心的关系.通过中心点间距离与分位数半径大小的比较对中心点进行融合形成新类,从而快速给出良好的聚类结果,同时也确定了类的数目.在仿真实验中,通过与不同算法在时间和分类精确度上的比较分析,也证明该方法快速有效. 展开更多
关键词 K-MEANS 类的数目 分位数半径 动态K-means
在线阅读 下载PDF
基于分位数半径动态K-means的分布式负荷聚类算法 被引量:28
2
作者 刘季昂 刘友波 +1 位作者 程明畅 余莉娜 《电力系统保护与控制》 EI CSCD 北大核心 2019年第24期15-22,共8页
针对电力负荷曲线聚类中传统的K-means算法对初始值敏感以及需给定类数目的缺陷,将一种基于分位数半径的动态K-means算法应用到日负荷曲线的聚类分析中,并进行了分布式的改进以优化计算效率。此算法结合了两种思想:分布式聚类中的局部... 针对电力负荷曲线聚类中传统的K-means算法对初始值敏感以及需给定类数目的缺陷,将一种基于分位数半径的动态K-means算法应用到日负荷曲线的聚类分析中,并进行了分布式的改进以优化计算效率。此算法结合了两种思想:分布式聚类中的局部聚类与全局聚类,以及层次K-means中以多次k取定值时K-means运算所得到的中心点来表示该类。将多次的K-means运算分配到不同子站点,并使每次K-means运算中k不断改变。再从类的几何特征出发,引入了分位数半径的概念,规定样本点与各类中心点间距的分位数表示该类的半径,于主站点中对各类的中心点间距与类的半径进行大小比较,并进行筛选融合来获得新的类,从而实现较为快速地识别类数目,并且得到新的聚类初始中心与结果。最终以某地区606个用户某月的日负荷数据为研究对象,验证了该算法在电力负荷曲线聚类分析中的有效性。 展开更多
关键词 电力大数据 聚类 负荷曲线聚类 分位数半径 布式聚类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部