期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一个基于分枝搜索的函数全局优化方法 被引量:2
1
作者 柳常青 张钹 《计算机学报》 EI CSCD 北大核心 1997年第11期1009-1017,共9页
本文给出了算法性能的一种度量,并且提出了一种全局优化算法策略,其基本框架(分枝随机搜索)类似于二分搜索,即将搜索区域划分成等测度的两个子区间(也可以多个),通过采样确定最有可能包含全局最优点的子区间,将其保留;去掉另... 本文给出了算法性能的一种度量,并且提出了一种全局优化算法策略,其基本框架(分枝随机搜索)类似于二分搜索,即将搜索区域划分成等测度的两个子区间(也可以多个),通过采样确定最有可能包含全局最优点的子区间,将其保留;去掉另一半,在剩下的区间重复这一过程.尽管这种算法其简单性几近纯随机算法和格点法,但理论分析和实验结果表明,其效率却高得多. 展开更多
关键词 复杂性 分枝搜索 函数全局优化法
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
2
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部