科学的轨道交通出行模式分析是运营决策优化的重要依据。为挖掘城市轨道交通时空流动特征及其影响机理,提出一种基于非负张量分解的OD客流强度时空分布计算方法,采用融合SHAP归因分析的极端梯度提升树(eXtreme Gradient Boosting,XGBoo...科学的轨道交通出行模式分析是运营决策优化的重要依据。为挖掘城市轨道交通时空流动特征及其影响机理,提出一种基于非负张量分解的OD客流强度时空分布计算方法,采用融合SHAP归因分析的极端梯度提升树(eXtreme Gradient Boosting,XGBoost)对各模式OD客流强度进行拟合预测。使用城市轨道交通AFC(automatic fare collection system,AFC)系统数据,从空间、时段以及出行日3个维度构建3阶客流OD张量,采用交替非负最小二乘法(alternating non negative least squares,ANLS)实现非负CP张量分解。基于张量分解结果,从北京轨道交通344个站点连续1周16266966条出行数据中,提取出晨高峰长距离通勤、早高峰中短通勤、平峰休闲中转出行、晚归出行4种出行模式的时、空分布特征。基于可解释性机器学习模型,对各模式OD客流进行预测。结果表明XGBoost与CatBoost、LightGBM、OLS相比更具优势。根据OD起终点站域环境特征,考虑起终点缓冲区内各类兴趣点(point of interest,POI)数量、小区住户数、房价、人口数量、站点偏离距离以及出行距离等指标,构建OD强度关联指标体系,解释各指标对OD客流强度的正负反馈效应。SHAP归因分析说明,居民更倾向于14站以内的中短途出行,并分别得到了就业类POI数目对晨、早通勤客流正向影响,以及餐饮类POI数目对休闲中转出行客流正向影响的临界阈值。该方法可为轨道交通精细化出行引导和客流组织提供数据支撑,优化城市轨道交通供需平衡及服务水平。展开更多
城市小汽车出行的时空特性是支撑城市交通规划设计与交通需求管理的重要基础。针对传统的以集计数据或抽样数据研究的局限性,本文基于车牌识别数据,全量感知车辆出行活动,分析城市中个体车辆的出行时空模式。首先,从数据中提取并分离车...城市小汽车出行的时空特性是支撑城市交通规划设计与交通需求管理的重要基础。针对传统的以集计数据或抽样数据研究的局限性,本文基于车牌识别数据,全量感知车辆出行活动,分析城市中个体车辆的出行时空模式。首先,从数据中提取并分离车辆出行链,获得小汽车出行的时间、空间、频率和拓扑特征,根据各时段停留点构造车辆出行活动序列。其次,融合兴趣点(Point of Interest, POI)数据识别出行起讫点关联的土地利用特性作为停留点特征,在出行活动序列上应用k-modes聚类算法挖掘出常规通勤模式、特殊通勤模式、短时活动模式和外来办事模式这4类30种小汽车出行模式。最后,对每一类模式的群体规模、特征和典型出行行为进行详细地分析讨论。结果表明,95%的车辆出行活动可以用不多于3条边组成的简单拓扑结构表示,其中,约30%的车辆可构造出行活动序列,并用k-modes聚类算法有效分离出各类机动车全天出行的时空模式。工作日车辆出行主要表现为常规通勤模式,休息日则以短时活动模式为主。通过对个体车辆的微观行为分析,结合出行拓扑结构和出行活动序列进行出行模式的挖掘,能够全面地反映城市机动车出行的实际情况,为精细化机动车出行行为分析与管控策略制定提供理论支撑。展开更多
为分析建成环境对公共自行车出行模式的影响,文章结合公共自行车运营数据和建成环境数据,以公共自行车站点为中心建立缓冲区并提取缓冲区内兴趣点(point of interest,POI),在考虑POI规模的基础上划分站点类型;根据站点类型对出行起讫点(...为分析建成环境对公共自行车出行模式的影响,文章结合公共自行车运营数据和建成环境数据,以公共自行车站点为中心建立缓冲区并提取缓冲区内兴趣点(point of interest,POI),在考虑POI规模的基础上划分站点类型;根据站点类型对出行起讫点(origin-destination,OD)分类,以OD类型确定公共自行车出行模式,使用地理加权回归(geographically weighted regression,GWR)模型,分析建成环境对公共自行车出行模式的影响;以昆明市为例进行实证分析。结果表明:昆明市公共自行车出行模式可划分为16种,OD皆为住宅主导型和公司(企业)主导型站点的出行模式约占69.26%;建成环境对不同出行模式的影响效应存在差异;土地利用混合度是公共自行车出行模式的主要影响因素。研究结果可为公共自行车布局优化及运营管理提供参考。展开更多
作为城市交通规划、建设的依据,居民出行调查显得尤为重要。调查数据的挖掘分析可以为交通结构的改善及交通政策的制定提供一定参考。利用西安市居民出行调查样本数据,借助于Classification And Regression Tree算法,分别构建了可达过...作为城市交通规划、建设的依据,居民出行调查显得尤为重要。调查数据的挖掘分析可以为交通结构的改善及交通政策的制定提供一定参考。利用西安市居民出行调查样本数据,借助于Classification And Regression Tree算法,分别构建了可达过程与乘车过程的决策树模型。该模型结果表明:到站距离为可达过程出行方式选择的主要影响因素;在乘车过程中,出行距离为出行方式的主要影响因素,远距离出行条件下,居民更愿意选择私家车及“公交+地铁”组合出行方式;近距离出行更倾向于选择公交出行。在此基础上,年龄、是否拥有小汽车、有无公交卡等因素对出行方式的选择产生进一步影响。展开更多
文摘科学的轨道交通出行模式分析是运营决策优化的重要依据。为挖掘城市轨道交通时空流动特征及其影响机理,提出一种基于非负张量分解的OD客流强度时空分布计算方法,采用融合SHAP归因分析的极端梯度提升树(eXtreme Gradient Boosting,XGBoost)对各模式OD客流强度进行拟合预测。使用城市轨道交通AFC(automatic fare collection system,AFC)系统数据,从空间、时段以及出行日3个维度构建3阶客流OD张量,采用交替非负最小二乘法(alternating non negative least squares,ANLS)实现非负CP张量分解。基于张量分解结果,从北京轨道交通344个站点连续1周16266966条出行数据中,提取出晨高峰长距离通勤、早高峰中短通勤、平峰休闲中转出行、晚归出行4种出行模式的时、空分布特征。基于可解释性机器学习模型,对各模式OD客流进行预测。结果表明XGBoost与CatBoost、LightGBM、OLS相比更具优势。根据OD起终点站域环境特征,考虑起终点缓冲区内各类兴趣点(point of interest,POI)数量、小区住户数、房价、人口数量、站点偏离距离以及出行距离等指标,构建OD强度关联指标体系,解释各指标对OD客流强度的正负反馈效应。SHAP归因分析说明,居民更倾向于14站以内的中短途出行,并分别得到了就业类POI数目对晨、早通勤客流正向影响,以及餐饮类POI数目对休闲中转出行客流正向影响的临界阈值。该方法可为轨道交通精细化出行引导和客流组织提供数据支撑,优化城市轨道交通供需平衡及服务水平。
文摘城市小汽车出行的时空特性是支撑城市交通规划设计与交通需求管理的重要基础。针对传统的以集计数据或抽样数据研究的局限性,本文基于车牌识别数据,全量感知车辆出行活动,分析城市中个体车辆的出行时空模式。首先,从数据中提取并分离车辆出行链,获得小汽车出行的时间、空间、频率和拓扑特征,根据各时段停留点构造车辆出行活动序列。其次,融合兴趣点(Point of Interest, POI)数据识别出行起讫点关联的土地利用特性作为停留点特征,在出行活动序列上应用k-modes聚类算法挖掘出常规通勤模式、特殊通勤模式、短时活动模式和外来办事模式这4类30种小汽车出行模式。最后,对每一类模式的群体规模、特征和典型出行行为进行详细地分析讨论。结果表明,95%的车辆出行活动可以用不多于3条边组成的简单拓扑结构表示,其中,约30%的车辆可构造出行活动序列,并用k-modes聚类算法有效分离出各类机动车全天出行的时空模式。工作日车辆出行主要表现为常规通勤模式,休息日则以短时活动模式为主。通过对个体车辆的微观行为分析,结合出行拓扑结构和出行活动序列进行出行模式的挖掘,能够全面地反映城市机动车出行的实际情况,为精细化机动车出行行为分析与管控策略制定提供理论支撑。
文摘为分析建成环境对公共自行车出行模式的影响,文章结合公共自行车运营数据和建成环境数据,以公共自行车站点为中心建立缓冲区并提取缓冲区内兴趣点(point of interest,POI),在考虑POI规模的基础上划分站点类型;根据站点类型对出行起讫点(origin-destination,OD)分类,以OD类型确定公共自行车出行模式,使用地理加权回归(geographically weighted regression,GWR)模型,分析建成环境对公共自行车出行模式的影响;以昆明市为例进行实证分析。结果表明:昆明市公共自行车出行模式可划分为16种,OD皆为住宅主导型和公司(企业)主导型站点的出行模式约占69.26%;建成环境对不同出行模式的影响效应存在差异;土地利用混合度是公共自行车出行模式的主要影响因素。研究结果可为公共自行车布局优化及运营管理提供参考。
文摘作为城市交通规划、建设的依据,居民出行调查显得尤为重要。调查数据的挖掘分析可以为交通结构的改善及交通政策的制定提供一定参考。利用西安市居民出行调查样本数据,借助于Classification And Regression Tree算法,分别构建了可达过程与乘车过程的决策树模型。该模型结果表明:到站距离为可达过程出行方式选择的主要影响因素;在乘车过程中,出行距离为出行方式的主要影响因素,远距离出行条件下,居民更愿意选择私家车及“公交+地铁”组合出行方式;近距离出行更倾向于选择公交出行。在此基础上,年龄、是否拥有小汽车、有无公交卡等因素对出行方式的选择产生进一步影响。