期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于集合论估计的电网状态辨识(三)基于优化模型的求解方法 被引量:4
1
作者 王彬 王治华 +2 位作者 董树锋 周宁慧 何光宇 《电力系统自动化》 EI CSCD 北大核心 2016年第7期49-53,共5页
求解变量的限值问题,最直观的方式为建立以待求变量为目标函数、以约束条件为可行域的优化模型,通过求解极大化和极小化问题,分别得到该变量的上限值和下限值。基于优化模型的求解方法的优点在于可综合考虑所有的约束,所得结果保守性较... 求解变量的限值问题,最直观的方式为建立以待求变量为目标函数、以约束条件为可行域的优化模型,通过求解极大化和极小化问题,分别得到该变量的上限值和下限值。基于优化模型的求解方法的优点在于可综合考虑所有的约束,所得结果保守性较小,甚至不存在保守性。首先简要介绍了求解状态变量限值和量测变量限值的优化模型。然而由于该优化模型为非凸模型,而对于非凸优化模型,无法得到其全局最优解,为解决该问题,继而建立了求解量测变量限值的锥优化模型。算例表明,该模型既保证了结果的可信性,也提高了求解效率。 展开更多
关键词 状态估计 集合论估计 凸优化模型 优化模型
在线阅读 下载PDF
基于秩约束逼近的系统模型降阶 被引量:1
2
作者 李久芹 杨洪礼 《山东科技大学学报(自然科学版)》 CAS 2016年第6期114-122,共9页
针对Daniel Ankelhed在2007年根据控制器设计原理提出的降阶模型,利用秩函数、核范数、谱范数与线性矩阵不等式的相互关系,将秩约束条件转化为线性矩阵不等式,使原降阶模型变为凸优化模型。数值试验表明降阶效果良好。
关键词 系统降阶 秩约束条件 线性矩阵不等式 凸优化模型
在线阅读 下载PDF
基于截断奇异值低秩矩阵恢复的Canny边缘检测算法 被引量:3
3
作者 郭伟 董宏亮 赵德冀 《计算机工程与科学》 CSCD 北大核心 2018年第9期1670-1678,共9页
针对Canny算法在处理噪声图像时存在的不足,为提高其准确性和鲁棒性,提出一种基于截断奇异值的低秩矩阵恢复方法,以及一种更加准确的双噪声凸优化模型和求解方法。使用经典Canny边缘检测算法作用于分解后去除冗余信息的主成分上,将图像... 针对Canny算法在处理噪声图像时存在的不足,为提高其准确性和鲁棒性,提出一种基于截断奇异值的低秩矩阵恢复方法,以及一种更加准确的双噪声凸优化模型和求解方法。使用经典Canny边缘检测算法作用于分解后去除冗余信息的主成分上,将图像的边缘检测转化为对主成分的边缘检测,可以在有效地去除脉冲噪声和高斯噪声干扰的同时,更好地保留边缘信息。为验证其有效性,在不同噪声浓度以及混合噪声情况下进行实验,结果分析表明,基于低秩矩阵恢复的边缘检测算法可以更好地保留完整的边缘信息,提高边缘检测的准确性及鲁棒性。 展开更多
关键词 边缘检测 鲁棒主成分分析 双噪声凸优化模型 截断奇异值 奇异值分解
在线阅读 下载PDF
Improving cam profile design optimization based on classical splines and dynamic model 被引量:8
4
作者 夏必忠 刘新成 +1 位作者 尚欣 任世远 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1817-1825,共9页
Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the s... Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles. 展开更多
关键词 cam profile design spline optimization trade-off
在线阅读 下载PDF
Improved nonconvex optimization model for low-rank matrix recovery 被引量:1
5
作者 李玲芝 邹北骥 朱承璋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期984-991,共8页
Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recov... Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods. 展开更多
关键词 machine learning computer vision matrix recovery nonconvex optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部