利用草图进行图像检索的难点在于对不同尺度、位置、旋转及形变图像的有效检索。为了更准确地识别并检索不同尺度、位置和旋转的图像,提出一种基于草图局部几何不变矩的图像检索方法(SBIRULGMI)。首先,利用图像的几何特征分别确定各图...利用草图进行图像检索的难点在于对不同尺度、位置、旋转及形变图像的有效检索。为了更准确地识别并检索不同尺度、位置和旋转的图像,提出一种基于草图局部几何不变矩的图像检索方法(SBIRULGMI)。首先,利用图像的几何特征分别确定各图像的坐标系;然后,在生成的坐标系中对图像进行平均分块并计算各块的几何不变矩作为特征向量;接着,用改进的欧氏距离计算目标图像与数据库图像的相似度;最后,采用蚁群(ACO)算法对按照相似度排序后的检索结果进行优化。所提方法在MPEG-7 shape1 part B图像数据库的检索识别准确率比形状上下文(SC)、边缘分布直方图(EOH)、局部线性高波特征(GALIF)及Mind Finder方法平均提高了17个百分点。实验结果表明该方法对不同平移、缩放和翻转的图像有较好的识别效果,对图像一定程度的旋转和形变具有更好的鲁棒性。展开更多
针对当前图像匹配方法的鲁棒性差、误配率较高及效率较低等不足,提出了基于三角网下的仿射不变几何约束的图像匹配算法。在尺度空间上通过Hessian矩阵对特征点进行检测,利用子块的三角特征与对角特征SURF(speeded up robust features)...针对当前图像匹配方法的鲁棒性差、误配率较高及效率较低等不足,提出了基于三角网下的仿射不变几何约束的图像匹配算法。在尺度空间上通过Hessian矩阵对特征点进行检测,利用子块的三角特征与对角特征SURF(speeded up robust features)机制进行改进,用于生成新的特征描述子,并通过定义阈值评估策略对图像特征点进行匹配,从而生成了初始匹配点;然后,引入Delaunay三角网,对初始匹配点进行聚类,以获取匹配三角形,将三角形以外的无效特征点剔除;最后,引入仿射不变几何约束,对匹配三角形进行细化,通过细化的匹配三角形获取最终的匹配特征点,有效剔除误配点,进一步提高配准精度。仿真结果表明,与当前图像匹配算法相比,所提算法具有更好的鲁棒性,且其具有更佳的匹配精度与效率,有效剔除了误配点。展开更多
A special class of cubic polynomials possessing decay of geometry property is studied.This class of cubic bimodal maps has generalized Fibonacci combinatorics.For maps with bounded combinatorics,we show that they have...A special class of cubic polynomials possessing decay of geometry property is studied.This class of cubic bimodal maps has generalized Fibonacci combinatorics.For maps with bounded combinatorics,we show that they have an absolutely continuous invariant probability measure.展开更多
文摘利用草图进行图像检索的难点在于对不同尺度、位置、旋转及形变图像的有效检索。为了更准确地识别并检索不同尺度、位置和旋转的图像,提出一种基于草图局部几何不变矩的图像检索方法(SBIRULGMI)。首先,利用图像的几何特征分别确定各图像的坐标系;然后,在生成的坐标系中对图像进行平均分块并计算各块的几何不变矩作为特征向量;接着,用改进的欧氏距离计算目标图像与数据库图像的相似度;最后,采用蚁群(ACO)算法对按照相似度排序后的检索结果进行优化。所提方法在MPEG-7 shape1 part B图像数据库的检索识别准确率比形状上下文(SC)、边缘分布直方图(EOH)、局部线性高波特征(GALIF)及Mind Finder方法平均提高了17个百分点。实验结果表明该方法对不同平移、缩放和翻转的图像有较好的识别效果,对图像一定程度的旋转和形变具有更好的鲁棒性。
文摘针对当前图像匹配方法的鲁棒性差、误配率较高及效率较低等不足,提出了基于三角网下的仿射不变几何约束的图像匹配算法。在尺度空间上通过Hessian矩阵对特征点进行检测,利用子块的三角特征与对角特征SURF(speeded up robust features)机制进行改进,用于生成新的特征描述子,并通过定义阈值评估策略对图像特征点进行匹配,从而生成了初始匹配点;然后,引入Delaunay三角网,对初始匹配点进行聚类,以获取匹配三角形,将三角形以外的无效特征点剔除;最后,引入仿射不变几何约束,对匹配三角形进行细化,通过细化的匹配三角形获取最终的匹配特征点,有效剔除误配点,进一步提高配准精度。仿真结果表明,与当前图像匹配算法相比,所提算法具有更好的鲁棒性,且其具有更佳的匹配精度与效率,有效剔除了误配点。
文摘A special class of cubic polynomials possessing decay of geometry property is studied.This class of cubic bimodal maps has generalized Fibonacci combinatorics.For maps with bounded combinatorics,we show that they have an absolutely continuous invariant probability measure.