期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
减法系统Ⅲ——各种BCY代数的等价类
1
作者 叶瑞芬 沈百英 《华东化工学院学报》 CSCD 1993年第5期627-632,共6页
在“减法系统Ⅰ”基础上,引入其它一些BCY代数并研究某些BGY代数的等价类(关于“=”),并证明了等价类的集合分别形成BCI代数、BCK代数或可换BCK代数。
关键词 减法系统 BCY代数 等价类 代数
在线阅读 下载PDF
减法系统Ⅱ——BCY代数的各种加强系统
2
作者 沈百英 叶瑞芬 《华东化工学院学报》 CSCD 1991年第5期505-516,共12页
在各种BCY代数中引入新的二元运算“+”,得到了具“和”的各种BCY代数,使得减法系统有了更完全的发展。另外,我们对所得到的各个加强系统的字问题进行了研究,并获得了相应系统的Gentzen形判定系统,用它们可肯定地解决相应的字问题。
关键词 BCY代数 字问题 加强系统 减法系统
在线阅读 下载PDF
Novel robust approach for constructing Mamdani-type fuzzy system based on PRM and subtractive clustering algorithm 被引量:1
3
作者 褚菲 马小平 +1 位作者 王福利 贾润达 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2620-2628,共9页
A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy syst... A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values. 展开更多
关键词 Mamdani-type fuzzy system robust system subtractive clustering algorithm outlier partial robust M-regression
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部