期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于VMD与加权RF的TBM掘进速度预测SHAP解释模型
1
作者
张建明
侍克斌
+3 位作者
贾运甫
任志强
巴合特别克·达拉依汗
刘昭
《隧道建设(中英文)》
CSCD
北大核心
2024年第5期1012-1028,共17页
为较准确地实现TBM掘进速度(PR)的预测,构建一套基于加权随机森林(RF)结合变分模态分解(VMD)的集成学习预测模型。模型建立过程中,通过收集来自KS隧洞与兰州水源地输水隧洞中涵盖不同岩性下的数据,利用VMD对数据进行4次模态分解,在保留...
为较准确地实现TBM掘进速度(PR)的预测,构建一套基于加权随机森林(RF)结合变分模态分解(VMD)的集成学习预测模型。模型建立过程中,通过收集来自KS隧洞与兰州水源地输水隧洞中涵盖不同岩性下的数据,利用VMD对数据进行4次模态分解,在保留数据特性的同时去除最高频噪音;采用SHAP对未加权传统RF从模型贡献角度进行特征度量,以此实现未加权传统RF加权,并使用RFECV与网格搜索对加权RF进行特征遴选、超参数优化;通过实际工程对模型的性能进行验证,基于SHAP理论对模型从全局与局部进行解释。结果表明:1)所建模型预测精度较高,其在测试集上的均方根误差(MSE)、平均绝对误差(MAE)与决定系数(R^(2))分别为0.0649(m/h)^(2)、0.1875 m/h、0.9254。2)在实际工程的验证中,模型取得了MSE=0.0503(m/h)^(2)、MAE=0.1613 m/h、R^(2)=0.9505的性能表现,精度理想,且性能均高于常用的深度神经网络、支持向量回归、未加权传统RF。3)经过VMD处理可有效提升PR的预测精度,处理后的模型在测试集上MSE、MAE、R^(2)分别提升了82.50%、59.00%、33.25%。4)岩石单轴抗压强度是精准预测PR时最重要的因素,地质参数在预测中的交互性明显优于掘进参数。预测分析重要洞段的PR时,需结合全局与局部2个角度进行综合分析。
展开更多
关键词
TBM隧道
TBM
掘进
性能
净掘进速度预测
变分模态分解
随机森林
在线阅读
下载PDF
职称材料
题名
基于VMD与加权RF的TBM掘进速度预测SHAP解释模型
1
作者
张建明
侍克斌
贾运甫
任志强
巴合特别克·达拉依汗
刘昭
机构
新疆水利水电勘测设计研究院有限责任公司
新疆农业大学水利与土木工程学院
新疆水利工程安全与水灾害防治重点实验室
新疆水发建设集团有限公司
出处
《隧道建设(中英文)》
CSCD
北大核心
2024年第5期1012-1028,共17页
基金
“新疆水利工程安全与水灾害防治重点实验室”2022年研究项目(ZDSYS-YJS-2022-08)。
文摘
为较准确地实现TBM掘进速度(PR)的预测,构建一套基于加权随机森林(RF)结合变分模态分解(VMD)的集成学习预测模型。模型建立过程中,通过收集来自KS隧洞与兰州水源地输水隧洞中涵盖不同岩性下的数据,利用VMD对数据进行4次模态分解,在保留数据特性的同时去除最高频噪音;采用SHAP对未加权传统RF从模型贡献角度进行特征度量,以此实现未加权传统RF加权,并使用RFECV与网格搜索对加权RF进行特征遴选、超参数优化;通过实际工程对模型的性能进行验证,基于SHAP理论对模型从全局与局部进行解释。结果表明:1)所建模型预测精度较高,其在测试集上的均方根误差(MSE)、平均绝对误差(MAE)与决定系数(R^(2))分别为0.0649(m/h)^(2)、0.1875 m/h、0.9254。2)在实际工程的验证中,模型取得了MSE=0.0503(m/h)^(2)、MAE=0.1613 m/h、R^(2)=0.9505的性能表现,精度理想,且性能均高于常用的深度神经网络、支持向量回归、未加权传统RF。3)经过VMD处理可有效提升PR的预测精度,处理后的模型在测试集上MSE、MAE、R^(2)分别提升了82.50%、59.00%、33.25%。4)岩石单轴抗压强度是精准预测PR时最重要的因素,地质参数在预测中的交互性明显优于掘进参数。预测分析重要洞段的PR时,需结合全局与局部2个角度进行综合分析。
关键词
TBM隧道
TBM
掘进
性能
净掘进速度预测
变分模态分解
随机森林
Keywords
tunnel boring machine(TBM)tunnel
TBM tunneling performance
net penetration rate prediction
variational mode decomposition
random forest
分类号
U45 [建筑科学—桥梁与隧道工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于VMD与加权RF的TBM掘进速度预测SHAP解释模型
张建明
侍克斌
贾运甫
任志强
巴合特别克·达拉依汗
刘昭
《隧道建设(中英文)》
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部