对NCAR CLM3.0(Community Land Model)的冻土过程参数化进行了改进。根据平衡态的热力学关系和考虑含冰量的土壤基质势的经验公式定义了冰点下的最大液态水含量,超过最大液态水含量的部分冻结为冰,并在水导率的计算中加入了冰的阻挡作...对NCAR CLM3.0(Community Land Model)的冻土过程参数化进行了改进。根据平衡态的热力学关系和考虑含冰量的土壤基质势的经验公式定义了冰点下的最大液态水含量,超过最大液态水含量的部分冻结为冰,并在水导率的计算中加入了冰的阻挡作用。利用青藏高原改则站2003年4月1日至2004年12月31日的观测资料进行了单点模拟试验,模拟结果表明,原模式对辐射通量模拟比较准确,但低估了冬季冻结期的液态水含量,高估了冰含量,土壤温度也因此出现偏差,改进冻土参数化后对液态水和冰的模拟明显改善,土壤温度模拟也更接近实测,部分改进了模式对土壤水热过程的模拟能力。展开更多
To reveal the influencing factors and changing rules for the hydrothermal interaction process of highway subgrade, the field measurements of Shiwei-Labudalin Highway in Inner Mongolia, China was conducted for 3 years,...To reveal the influencing factors and changing rules for the hydrothermal interaction process of highway subgrade, the field measurements of Shiwei-Labudalin Highway in Inner Mongolia, China was conducted for 3 years, based on which the freezing-thawing rules and water content changing characteristics were analyzed. The main results show the subgrade presents a frequent freezing-thawing alternation, and the water content of subgrade exhibits an obvious seasonal alternation. The subbase has the maximum water content, while the base has the minimum water content. The change of water flux is concentrated in the thawing period and consistent with the change of temperature gradient. The subbase layer has the most active water flux due to the heat absorption and impermeability of pavement that easily causes the water accumulation in this layer. Therefore, the prevention and treatment for the freezing-thawing disease should be started from heat insulation and water resistance.展开更多
文摘对NCAR CLM3.0(Community Land Model)的冻土过程参数化进行了改进。根据平衡态的热力学关系和考虑含冰量的土壤基质势的经验公式定义了冰点下的最大液态水含量,超过最大液态水含量的部分冻结为冰,并在水导率的计算中加入了冰的阻挡作用。利用青藏高原改则站2003年4月1日至2004年12月31日的观测资料进行了单点模拟试验,模拟结果表明,原模式对辐射通量模拟比较准确,但低估了冬季冻结期的液态水含量,高估了冰含量,土壤温度也因此出现偏差,改进冻土参数化后对液态水和冰的模拟明显改善,土壤温度模拟也更接近实测,部分改进了模式对土壤水热过程的模拟能力。
基金Project(2018-MSI-018) supported by the Key Science and Technology Project of the Ministry of Transport of ChinaProject(NJ-2018-28) supported by the Construction Science and Technology of the Department of Transport of Inner Mongolia Autonomous Region of China+2 种基金Project(2019MS05029) supported by the Natural Science Fund Project of Inner Mongolia Autonomous Region of ChinaProject(2020MS05077) supported by the Natural Science Fund Project of Inner Mongolia Autonomous Region of ChinaProject(NJ-2020-05) supported by the Research on Complete Survey Technology of Highway Road Area in High-latitude Permafrost Region, China。
文摘To reveal the influencing factors and changing rules for the hydrothermal interaction process of highway subgrade, the field measurements of Shiwei-Labudalin Highway in Inner Mongolia, China was conducted for 3 years, based on which the freezing-thawing rules and water content changing characteristics were analyzed. The main results show the subgrade presents a frequent freezing-thawing alternation, and the water content of subgrade exhibits an obvious seasonal alternation. The subbase has the maximum water content, while the base has the minimum water content. The change of water flux is concentrated in the thawing period and consistent with the change of temperature gradient. The subbase layer has the most active water flux due to the heat absorption and impermeability of pavement that easily causes the water accumulation in this layer. Therefore, the prevention and treatment for the freezing-thawing disease should be started from heat insulation and water resistance.