随着用户从消费者向产消者转型,越来越多用户有了储电、储热、蓄冷的需求,然而储能的高成本成为了用户侧储能的阻碍,为了解决这一问题,将云储能模式与冷热电联供型(combined cooling heating and power,CCHP)区域综合能源系统进行结合,...随着用户从消费者向产消者转型,越来越多用户有了储电、储热、蓄冷的需求,然而储能的高成本成为了用户侧储能的阻碍,为了解决这一问题,将云储能模式与冷热电联供型(combined cooling heating and power,CCHP)区域综合能源系统进行结合,提出了冷热电联供型区域综合能源系统电/热/冷云储能优化配置模型。首先,构建冷热电联供型区域综合能源系统的结构,并分析其输入、输出转化关系;然后对用户以及云储能提供商的充放能行为进行分析,分别从两主体的角度建立两阶段储能优化配置模型,第一阶段以用户总成本最小为目标对用户储能需求进行优化,第二阶段则在云储能提供商整合用户需求后,以云储能提供商成本最小为目标进行储能配置优化。最后,通过算例验证了云储能模式在储能配置中应用的优势,并对比分析了系统中有无蓄冷以及碳排放因素对储能优化配置的影响。展开更多
为了加快实现双碳目标,提高能源利用效率、减少碳排放量,通过选取关键供能设备冷热电三联供系统(combined cooling heating and power system,CCHP)构建了综合能源系统模型,并利用改进的二代非支配排序遗传算法(non-dominated sorting g...为了加快实现双碳目标,提高能源利用效率、减少碳排放量,通过选取关键供能设备冷热电三联供系统(combined cooling heating and power system,CCHP)构建了综合能源系统模型,并利用改进的二代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)研究了引入该设备后园区整体运行方式和运作效率的改变。结果表明:CCHP设备可通过其强耦合特性实现供能侧设备的多能互补和能量梯级利用;可见通过引入CCHP过后,可大大提高综合能源系统的运行效率,在减少运行成本的同时相对控制碳排放量的释放,提高系统总体效益。展开更多
文摘随着用户从消费者向产消者转型,越来越多用户有了储电、储热、蓄冷的需求,然而储能的高成本成为了用户侧储能的阻碍,为了解决这一问题,将云储能模式与冷热电联供型(combined cooling heating and power,CCHP)区域综合能源系统进行结合,提出了冷热电联供型区域综合能源系统电/热/冷云储能优化配置模型。首先,构建冷热电联供型区域综合能源系统的结构,并分析其输入、输出转化关系;然后对用户以及云储能提供商的充放能行为进行分析,分别从两主体的角度建立两阶段储能优化配置模型,第一阶段以用户总成本最小为目标对用户储能需求进行优化,第二阶段则在云储能提供商整合用户需求后,以云储能提供商成本最小为目标进行储能配置优化。最后,通过算例验证了云储能模式在储能配置中应用的优势,并对比分析了系统中有无蓄冷以及碳排放因素对储能优化配置的影响。
文摘为了加快实现双碳目标,提高能源利用效率、减少碳排放量,通过选取关键供能设备冷热电三联供系统(combined cooling heating and power system,CCHP)构建了综合能源系统模型,并利用改进的二代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)研究了引入该设备后园区整体运行方式和运作效率的改变。结果表明:CCHP设备可通过其强耦合特性实现供能侧设备的多能互补和能量梯级利用;可见通过引入CCHP过后,可大大提高综合能源系统的运行效率,在减少运行成本的同时相对控制碳排放量的释放,提高系统总体效益。