A novel power and cooling system combined system which coupled organic Rankine cycle(ORC) with vapor compression refrigeration cycle(VCRC) was proposed. R245 fa and butane were selected as the working fluid for the po...A novel power and cooling system combined system which coupled organic Rankine cycle(ORC) with vapor compression refrigeration cycle(VCRC) was proposed. R245 fa and butane were selected as the working fluid for the power and refrigeration cycle, respectively. A performance comparison and analysis for the combined system was presented. The results show that dual-pressure ORC-VCRC system can achieve an increase of 7.1% in thermal efficiency and 6.7% in exergy efficiency than that of basic ORC-VCRC. Intermediate pressure is a key parameter to both net power and exergy efficiency of dual-pressure ORC-VCRC system. Combined system can produce maximum net power and exergy efficiency at 0.85 MPa for intermediate pressure and 2.4 MPa for high pressure, respectively. However, superheated temperature at expander inlet has little impact on the two indicators. It can achieve higher overall COP, net power and exergy efficiency at smaller difference between condensation temperature and evaporation temperature of VCRC.展开更多
The hybrid system with radiant cooling and dedicated outdoor air not only possesses high energy efficiency, but also creates a healthy and comfortable indoor environment. Indoor air quality will be improved by the ded...The hybrid system with radiant cooling and dedicated outdoor air not only possesses high energy efficiency, but also creates a healthy and comfortable indoor environment. Indoor air quality will be improved by the dedicated outdoor air system(DOAS) and indoor thermal comfort can be enhanced by the radiant cooling system(RCS). The optimal air-supply mode of the hybrid system and the corresponding design approach were investigated. A full-scale experimental chamber with various air outlets and the ceiling radiant cooling panels(CRCP) was designed and established. The performances of different air-supply modes along with CRCPs were analyzed by multi-index evaluations. Preliminary investigations were also conducted on the humidity stratification and the control effect of different airflow modes to prevent condensation on CRCP. The overhead supply air is recommended as the best combination mode for the hybrid system after comprehensive comparison of the experiment results. The optimal proportion of CRCP accounting for the total cooling capacities in accord with specific cooling loads is found, which may provide valuable reference for the design and operation of the hybrid system.展开更多
Nowadays,new energy technologies are developing rapidly,energy storage systems are widely used,and lithium-ion batteries occupy a dominant position among them.Therefore,it is also very important to ensure their perfor...Nowadays,new energy technologies are developing rapidly,energy storage systems are widely used,and lithium-ion batteries occupy a dominant position among them.Therefore,it is also very important to ensure their performance,safety and service life through thermal management technology.In this paper,the causes of thermal runaway of lithium batteries are reviewed firstly,and three commonly used thermal management technologies,namely,air cooling,liquid cooling and phase change material cooling,are compared according to relevant literature in recent years.Air cooling technology has been widely studied because of its simple structure and low cost,but its temperature control effect is poor.Liquid cooling technology takes away heat through the circulation of liquid medium,which has a good cooling effect,but the system is relatively complex.Phase change material(PCM)cooling technology uses the high latent heat of PCM to absorb and re-lease heat,which can effectively reduce the peak temperature of a battery and improve the temperature uniformity,but the low thermal conductivity and liquid leakage are its main problems.To sum up,lithium-ion battery thermal management technology is moving towards a more efficient,safer and cost-effective direction.Coupled cooling systems,such as those combining liquid cooling and phase change material cooling,show great potential.Future research will continue to explore new materials and technologies to meet the growing demands of society and the market for lithium-ion battery perfor-mance and safety.展开更多
基金Project(12C0379)supported by the Scientific Research Fund of Hunan Province,ChinaProject(13QDZ04)supported by the Scientific Research Foundation for Doctors of Xiangtan University,China
文摘A novel power and cooling system combined system which coupled organic Rankine cycle(ORC) with vapor compression refrigeration cycle(VCRC) was proposed. R245 fa and butane were selected as the working fluid for the power and refrigeration cycle, respectively. A performance comparison and analysis for the combined system was presented. The results show that dual-pressure ORC-VCRC system can achieve an increase of 7.1% in thermal efficiency and 6.7% in exergy efficiency than that of basic ORC-VCRC. Intermediate pressure is a key parameter to both net power and exergy efficiency of dual-pressure ORC-VCRC system. Combined system can produce maximum net power and exergy efficiency at 0.85 MPa for intermediate pressure and 2.4 MPa for high pressure, respectively. However, superheated temperature at expander inlet has little impact on the two indicators. It can achieve higher overall COP, net power and exergy efficiency at smaller difference between condensation temperature and evaporation temperature of VCRC.
基金Project(51178298)supported by the National Natural Science Foundation of China
文摘The hybrid system with radiant cooling and dedicated outdoor air not only possesses high energy efficiency, but also creates a healthy and comfortable indoor environment. Indoor air quality will be improved by the dedicated outdoor air system(DOAS) and indoor thermal comfort can be enhanced by the radiant cooling system(RCS). The optimal air-supply mode of the hybrid system and the corresponding design approach were investigated. A full-scale experimental chamber with various air outlets and the ceiling radiant cooling panels(CRCP) was designed and established. The performances of different air-supply modes along with CRCPs were analyzed by multi-index evaluations. Preliminary investigations were also conducted on the humidity stratification and the control effect of different airflow modes to prevent condensation on CRCP. The overhead supply air is recommended as the best combination mode for the hybrid system after comprehensive comparison of the experiment results. The optimal proportion of CRCP accounting for the total cooling capacities in accord with specific cooling loads is found, which may provide valuable reference for the design and operation of the hybrid system.
基金supported by the National Natural Science Foundation of China(No.52001045).
文摘Nowadays,new energy technologies are developing rapidly,energy storage systems are widely used,and lithium-ion batteries occupy a dominant position among them.Therefore,it is also very important to ensure their performance,safety and service life through thermal management technology.In this paper,the causes of thermal runaway of lithium batteries are reviewed firstly,and three commonly used thermal management technologies,namely,air cooling,liquid cooling and phase change material cooling,are compared according to relevant literature in recent years.Air cooling technology has been widely studied because of its simple structure and low cost,but its temperature control effect is poor.Liquid cooling technology takes away heat through the circulation of liquid medium,which has a good cooling effect,but the system is relatively complex.Phase change material(PCM)cooling technology uses the high latent heat of PCM to absorb and re-lease heat,which can effectively reduce the peak temperature of a battery and improve the temperature uniformity,but the low thermal conductivity and liquid leakage are its main problems.To sum up,lithium-ion battery thermal management technology is moving towards a more efficient,safer and cost-effective direction.Coupled cooling systems,such as those combining liquid cooling and phase change material cooling,show great potential.Future research will continue to explore new materials and technologies to meet the growing demands of society and the market for lithium-ion battery perfor-mance and safety.