期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
润滑油冷却液污染的拉曼光谱检测方法研究
被引量:
1
1
作者
李婧
明廷锋
+2 位作者
孙云岭
田洪祥
盛晨兴
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021年第3期817-821,共5页
对船舶柴油机而言,润滑油常受到冷却液的污染,引起润滑油劣化变质,从而导致其功能失效。冷却液的主要成分是水、乙二醇及少量的防腐蚀、抗穴蚀、消泡沫等添加剂。将拉曼光谱用于检测润滑油被冷却液污染的浓度,是一种针对复杂混合物的拉...
对船舶柴油机而言,润滑油常受到冷却液的污染,引起润滑油劣化变质,从而导致其功能失效。冷却液的主要成分是水、乙二醇及少量的防腐蚀、抗穴蚀、消泡沫等添加剂。将拉曼光谱用于检测润滑油被冷却液污染的浓度,是一种针对复杂混合物的拉曼光谱检测问题,单个拉曼峰强度的定量分析方法无法满足浓度的定量检测。为此,将拉曼光谱分析和LSTM神经网络数据挖掘方法应用于检测润滑油冷却液污染的浓度。在实验室条件下,配制了冷却液污染浓度为2%,1.5%,1%,0.5%,0.25%和0%的柴油机润滑油油样,对每个油样取样50次,并进行拉曼光谱分析,共获得300个拉曼光谱数据,随机抽取其中80%的数据作为神经网络训练样本,剩余20%的数据作为测试样本,拉曼光谱样本数据的光谱范围为300~2000 cm^(-1);对数据进行预处理,包括采样、拟合、离散点平均梯度估计等;构建训练样本集,将LSTM神经网络和多层全连接层(FC)结合,建立4种不同的神经网络模型结构;得到其在训练集和测试集上的平均误差曲线、测试集上的检测准确率曲线。分析结果表明,FCs,LSTM-FCs-1,LSTM-FCs-2和LSTM-FCs-3等4种神经网络模型,检测准确率分别为96.7%,93.3%,98.3%和83.3%。选取任意1%的波数点,加入幅值随机正负变化1%的噪声之后,4种神经网络模型的检测准确率分别为88.3%,90.0%,96.7%和78.3%。可见,相比于其他3种神经网络结构模型,LSTM-FCs-2模型更适用于进行润滑油冷却液污染的定量估计,加噪后最高准确率仍可以达到96.7%,鲁棒性优于其他三种模型。拉曼光谱结合LSTM网络中的LSTM-FCs-2模型,应用于冷却液污染浓度分别为0.2%和0.4%的实际油样检测,相对误差分别为5.0%和7.5%,结果表明该方法可用于在用润滑油冷却液污染浓度的检测。
展开更多
关键词
拉曼光谱
柴油机润滑油
神经网络
定量估计
冷却液污染
在线阅读
下载PDF
职称材料
题名
润滑油冷却液污染的拉曼光谱检测方法研究
被引量:
1
1
作者
李婧
明廷锋
孙云岭
田洪祥
盛晨兴
机构
海军工程大学动力工程学院
武汉理工大学船舶动力工程技术交通行业重点实验室
国家水运安全工程技术研究中心可靠性工程研究所
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021年第3期817-821,共5页
基金
国家自然科学基金NSFC-浙江两化融和联合基金项目(U1709215)资助。
文摘
对船舶柴油机而言,润滑油常受到冷却液的污染,引起润滑油劣化变质,从而导致其功能失效。冷却液的主要成分是水、乙二醇及少量的防腐蚀、抗穴蚀、消泡沫等添加剂。将拉曼光谱用于检测润滑油被冷却液污染的浓度,是一种针对复杂混合物的拉曼光谱检测问题,单个拉曼峰强度的定量分析方法无法满足浓度的定量检测。为此,将拉曼光谱分析和LSTM神经网络数据挖掘方法应用于检测润滑油冷却液污染的浓度。在实验室条件下,配制了冷却液污染浓度为2%,1.5%,1%,0.5%,0.25%和0%的柴油机润滑油油样,对每个油样取样50次,并进行拉曼光谱分析,共获得300个拉曼光谱数据,随机抽取其中80%的数据作为神经网络训练样本,剩余20%的数据作为测试样本,拉曼光谱样本数据的光谱范围为300~2000 cm^(-1);对数据进行预处理,包括采样、拟合、离散点平均梯度估计等;构建训练样本集,将LSTM神经网络和多层全连接层(FC)结合,建立4种不同的神经网络模型结构;得到其在训练集和测试集上的平均误差曲线、测试集上的检测准确率曲线。分析结果表明,FCs,LSTM-FCs-1,LSTM-FCs-2和LSTM-FCs-3等4种神经网络模型,检测准确率分别为96.7%,93.3%,98.3%和83.3%。选取任意1%的波数点,加入幅值随机正负变化1%的噪声之后,4种神经网络模型的检测准确率分别为88.3%,90.0%,96.7%和78.3%。可见,相比于其他3种神经网络结构模型,LSTM-FCs-2模型更适用于进行润滑油冷却液污染的定量估计,加噪后最高准确率仍可以达到96.7%,鲁棒性优于其他三种模型。拉曼光谱结合LSTM网络中的LSTM-FCs-2模型,应用于冷却液污染浓度分别为0.2%和0.4%的实际油样检测,相对误差分别为5.0%和7.5%,结果表明该方法可用于在用润滑油冷却液污染浓度的检测。
关键词
拉曼光谱
柴油机润滑油
神经网络
定量估计
冷却液污染
Keywords
Raman spectroscopy
Diesel engine lubricating oil
Neural network
Quantitative estimates
Coolant contamination
分类号
O657.3 [理学—分析化学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
润滑油冷却液污染的拉曼光谱检测方法研究
李婧
明廷锋
孙云岭
田洪祥
盛晨兴
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部