期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于多模态数据融合的农作物病害识别方法 被引量:2
1
作者 陈维 施昌勇 马传香 《计算机应用》 北大核心 2025年第3期840-848,共9页
现有的基于深度学习模型的农作物病害识别方法依赖特定农作物病害图像数据集进行图像特征学习,而忽视了文本特征在辅助图像特征学习中的重要性。为了更有效地提高模型对农作物病害图像的特征提取能力及病害识别能力,提出一种基于对比语... 现有的基于深度学习模型的农作物病害识别方法依赖特定农作物病害图像数据集进行图像特征学习,而忽视了文本特征在辅助图像特征学习中的重要性。为了更有效地提高模型对农作物病害图像的特征提取能力及病害识别能力,提出一种基于对比语言-图像预训练和多模态数据融合的农作物病害识别方法(CDR-CLIP)。首先,构建高质量的病害识别图像-文本对数据集,利用文本信息增强农作物病害图像的特征表示;其次,利用多模态融合策略有效结合文本特征与图像特征,以加强模型对病害的判别能力;最后,针对性地设计预训练和微调策略,从而优化模型在特定农作物病害识别任务中的表现。实验结果表明,在PlantVillage和AI Challenger 2018农作物病害数据集上,CDR-CLIP的病害识别准确率分别达到99.31%和87.66%,F1值分别达到99.04%和87.56%;在PlantDoc农作物病害数据集上,CDR-CLIP的平均精度均值mAP@0.5达到51.10%,展现出CDR-CLIP强大的性能优势。 展开更多
关键词 数据融合 多模态 大语言模型 农作物病害识别 对比学习
在线阅读 下载PDF
基于知识蒸馏的轻量化农作物病害识别算法
2
作者 胡雯婧 蒋龙泉 +4 位作者 余俊龙 徐伊茜 刘奇鹏 梁雷 李嘉豪 《华东师范大学学报(自然科学版)》 北大核心 2025年第1期59-71,共13页
农作物病害是威胁农作物生长的主要因素之一,机器学习算法能高效率实现大范围农作物病害的发现,有利于对其进行及时处理,进而提升农作物的产量和质量.在大范围农业场景中,由于供电等条件限制,无法满足服务器等高算力设备的供电需求,现... 农作物病害是威胁农作物生长的主要因素之一,机器学习算法能高效率实现大范围农作物病害的发现,有利于对其进行及时处理,进而提升农作物的产量和质量.在大范围农业场景中,由于供电等条件限制,无法满足服务器等高算力设备的供电需求,现有深度网络模型大多需要较高算力,难以部署在低功耗的嵌入式设备上,给大范围农作物病害的准确识别应用带来障碍.为解决此问题,提出了一种基于知识蒸馏的轻量化农作物病害识别模型,并设计了一种基于残差结构和注意力机制的学生模型,利用知识蒸馏方法从大规模模型ConvNeXt中迁移学习成果,在实现模型轻量化的同时保持高精度识别.实验结果表明,在模型规模为2.28 MB的条件下, 39类农作物病害图像分类任务的准确率达到了98.72%,且每类病害的精确率、召回率和特异度均高于90%.该模型满足了在嵌入式设备中部署的需求,为农作物病害识别提供了一种实用高效的解决方法. 展开更多
关键词 农作物病害识别 卷积神经网络 知识蒸馏算法 注意力机制
在线阅读 下载PDF
基于改进Vision Transformer网络的农作物病害识别方法 被引量:7
3
作者 王杨 李迎春 +6 位作者 许佳炜 王傲 马唱 宋世佳 谢帆 赵传信 胡明 《小型微型计算机系统》 CSCD 北大核心 2024年第4期887-893,共7页
基于DCNN模型的农作物病害识别方法在实验室环境下识别准确率高,但面对噪声时缺少鲁棒性.为了兼顾农作物病害识别的精度和鲁棒性,本文在标准ViT模型基础上加入增强分块序列化和掩码多头注意力,解决标准ViT模型缺乏局部归纳偏置和视觉特... 基于DCNN模型的农作物病害识别方法在实验室环境下识别准确率高,但面对噪声时缺少鲁棒性.为了兼顾农作物病害识别的精度和鲁棒性,本文在标准ViT模型基础上加入增强分块序列化和掩码多头注意力,解决标准ViT模型缺乏局部归纳偏置和视觉特征序列的自注意力过于关注自身的问题.实验结果表明,本文的EPEMMSA-ViT模型对比标准ViT模型可以更高效的从零学习;当添加预训练权重训练网络时,EPEMMSA-ViT模型在数据增强的PlantVillage番茄子集上能够得到99.63%的分类准确率;在添加椒盐噪声的测试数据集上,对比ResNet50、DenseNet121、MobileNet和ConvNeXt的分类准确率分别提升了6.08%、9.78%、29.78%和12.41%;在添加均值模糊的测试数据集上,对比ResNet50、DenseNet121、MobileNet和ConvNeXt的分类准确率分别提升了18.92%、31.11%、20.37%和19.58%. 展开更多
关键词 农作物病害识别 深度卷积神经网络 视觉Transformer 自注意力 局部归纳偏置
在线阅读 下载PDF
深度学习在农作物病害识别中的研究进展 被引量:7
4
作者 岳喜申 《安徽农学通报》 2024年第6期100-103,共4页
农作物病害是严重影响农业生产的关键因素之一。近年来,深度学习技术迅速发展,其在农作物叶部病害检测和识别领域的应用逐渐受到关注。本文对基于深度学习的农作物病害识别方法进行总结,分析了该技术在农作物病害识别中的应用,从田间环... 农作物病害是严重影响农业生产的关键因素之一。近年来,深度学习技术迅速发展,其在农作物叶部病害检测和识别领域的应用逐渐受到关注。本文对基于深度学习的农作物病害识别方法进行总结,分析了该技术在农作物病害识别中的应用,从田间环境、成本和数据量等方面入手探讨其需要解决的一些问题,并对其发展进行了展望,为今后农作物病害识别的深入研究与发展提供参考。 展开更多
关键词 深度学习 农作物病害识别 病害图像数据集
在线阅读 下载PDF
基于注意力机制和多尺度残差网络的农作物病害识别 被引量:52
5
作者 黄林生 罗耀武 +2 位作者 杨小冬 杨贵军 王道勇 《农业机械学报》 EI CAS CSCD 北大核心 2021年第10期264-271,共8页
针对传统农作物病害识别方法依靠人工提取特征,步骤复杂且低效,难以实现在田间环境下识别的问题,提出一种多尺度卷积结构与注意力机制结合的农作物病害识别模型。该研究在残差网络(ResNet18)的基础上进行改进,引入Inception模块,利用其... 针对传统农作物病害识别方法依靠人工提取特征,步骤复杂且低效,难以实现在田间环境下识别的问题,提出一种多尺度卷积结构与注意力机制结合的农作物病害识别模型。该研究在残差网络(ResNet18)的基础上进行改进,引入Inception模块,利用其多尺度卷积核结构对不同尺度的病害特征进行提取,提高了特征的丰富度。在残差结构的基础上加入注意力机制SENet(Squeeze-and-excitation networks),增强了有用特征的权重,减弱了噪声等无用特征的影响,进一步提高特征提取能力并且增强了模型的鲁棒性。实验结果表明,改进后的多尺度注意力残差网络模型(Multi-Scale-SE-ResNet18)在复杂田间环境收集的8种农作物病害数据集上的平均识别准确率达到95.62%,相较于原ResNet18模型准确率提高10.92个百分点,模型占用内存容量仅为44.2 MB。改进后的Multi-Scale-SE-ResNet18具有更好的特征提取能力,可以提取到更多的病害特征信息,并且较好地平衡了模型的识别精度与模型复杂度,可为田间环境下农作物病害识别提供参考。 展开更多
关键词 农作物病害识别 残差网络 特征提取 多尺度卷积 注意力机制
在线阅读 下载PDF
基于高阶残差和参数共享反馈卷积神经网络的农作物病害识别 被引量:26
6
作者 曾伟辉 李淼 +1 位作者 李增 熊焰 《电子学报》 EI CAS CSCD 北大核心 2019年第9期1979-1986,共8页
当前,大部分农作物病害图像识别方法主要关注于精度而忽略了鲁棒性.在面向实际环境时,由于噪声干扰和环境因素影响导致识别精度不高.为此提出了一种高阶残差和参数共享反馈的卷积神经网络模型以应用于实际环境农作物病害识别.其中,高阶... 当前,大部分农作物病害图像识别方法主要关注于精度而忽略了鲁棒性.在面向实际环境时,由于噪声干扰和环境因素影响导致识别精度不高.为此提出了一种高阶残差和参数共享反馈的卷积神经网络模型以应用于实际环境农作物病害识别.其中,高阶残差子网络为病害表观提供丰富细致的特征表达,以提高模型识别精度;参数共享反馈子网络用来进一步抑制原深层特征中的背景噪声,以提高模型的鲁棒性.实验结果表明,当面向实际环境农作物病害识别时,本文方法在识别精度和鲁棒性上均优于其他方法. 展开更多
关键词 高阶残差 参数共享反馈 鲁棒性 农作物病害识别
在线阅读 下载PDF
面向农作物病害识别的高阶残差卷积神经网络研究 被引量:11
7
作者 曾伟辉 李淼 +3 位作者 张健 黄小平 王敬贤 袁媛 《中国科学技术大学学报》 CAS CSCD 北大核心 2019年第10期781-790,共10页
当前研究农作物病害的准确识别工作中,针对简单背景的农作物病害图像识别取得了巨大成功,但当面向包含有各种噪声和复杂背景真实场景的农作物病害图像识别问题时,难以满足识别准确率的要求.为此提出了一种新的面向农作物病害识别应用的... 当前研究农作物病害的准确识别工作中,针对简单背景的农作物病害图像识别取得了巨大成功,但当面向包含有各种噪声和复杂背景真实场景的农作物病害图像识别问题时,难以满足识别准确率的要求.为此提出了一种新的面向农作物病害识别应用的高阶残差卷积神经网络方法,以实现农作物病害的准确、抗干扰的识别.实验结果表明,该方法具有高准确率、强鲁棒性和良好的抗干扰能力,能较好地满足农作物病害识别的实际应用需求. 展开更多
关键词 农作物病害识别 高阶残差 鲁棒性 卷积神经网络
在线阅读 下载PDF
改进ShuffleNet V2的轻量级农作物病害识别方法 被引量:27
8
作者 李好 邱卫根 张立臣 《计算机工程与应用》 CSCD 北大核心 2022年第12期260-268,共9页
针对目前有关深度学习的农作物病害识别方法中存在模型较为复杂,部署在计算资源有限的边缘设备和移动终端上适应性不强,实时准确识别作物病害较差的问题,提出一种改进ShuffleNet V2的轻量级农作物病害识别方法。以ShuffleNet V2单元为基... 针对目前有关深度学习的农作物病害识别方法中存在模型较为复杂,部署在计算资源有限的边缘设备和移动终端上适应性不强,实时准确识别作物病害较差的问题,提出一种改进ShuffleNet V2的轻量级农作物病害识别方法。以ShuffleNet V2单元为基础,引入ECA(efficient channel attention)注意力模块,使用H-Swish激活函数以便减少网络结构每个Stage模块中ShuffleNet V2单元使用个数,使用轻量化网络设计组件深度可分离卷积。在PlantVillage病害数据集上进行实验。结果表明,模型的参数量约为2.95×10^(5),计算量为3.388×10^(7)(FLOPs)和6.674×10^(7)( MAdd),病害识别平均准确率达到了99.24%,为农作物病害识别方法在移动终端等资源受限设备上部署应用提供参考。 展开更多
关键词 农作物病害识别 ShuffleNet V2 轻量级 ECA注意力模块
在线阅读 下载PDF
基于改进通道注意力机制的农作物病害识别模型研究 被引量:8
9
作者 肖天赐 陈燕红 +2 位作者 李永可 李雨晴 罗玉峰 《江苏农业科学》 北大核心 2023年第24期168-175,共8页
准确地识别农作物病害种类、病害程度,是能够正确防治病害的基础,对农作物的高质量生产有重要意义。针对传统深度学习模型对图像的细粒度分类不够精准的问题,提出不参与残差计算的通道注意力(efficient channel attention without parti... 准确地识别农作物病害种类、病害程度,是能够正确防治病害的基础,对农作物的高质量生产有重要意义。针对传统深度学习模型对图像的细粒度分类不够精准的问题,提出不参与残差计算的通道注意力(efficient channel attention without participating in residual calculation,EWPRC)结构,该结构将改进的通道注意力机制ECANet3放在残差块之后,增加模型对通道维度的权重学习能力,并将EWPRC结构用于骨干网络为ResNet50的迁移学习模型中,通过替换模型中的layer3、layer4层得到了EWPRC-RseNet-t模型。试验使用了AIChallenger 2018数据集,在数据预处理、数据增强、超参数相同的情况下,首先对比了固定核大小为3、5、7、11、13的通道注意力机制对模型准确率的影响,在此试验中,模型的准确率随卷积核变大呈下降趋势,其中一维卷积核大小为3的模型准确率最高,达到了87.42%,比核大小为5、7、11、13的模型分别提高了0.03、0.42、0.51、0.64百分点。再将EWPRC-ResNet-t模型与经过微调的迁移学习模型ResNet-t以及GoogLeNet、MobileNet-v3、ResNet50模型进行对比,以准确率、精确率、召回率以及F1值作为评价指标,试验结果证明EWPRC-ResNet-t模型取得了最好的效果,比传统深度学习模型中准确率最高的ResNet50模型提高了0.99百分点,比ResNet-t模型提高了0.75百分点。且相比传统的深度学习模型,EWPRC-ResNet-t模型有更高的精度、召回率与F1得分。 展开更多
关键词 农作物病害识别 通道注意力机制 残差网络 迁移学习 数据增强
在线阅读 下载PDF
基于轻量级神经网络的农作物病害识别算法 被引量:16
10
作者 洪惠群 黄风华 《沈阳农业大学学报》 CAS CSCD 北大核心 2021年第2期239-245,共7页
应用深度学习的图像分析技术,可较早地、无损地检测作物病害,但移动端计算资源的有限性限制了深度学习在移动端的应用和发展。利用迁移学习方法,进行多种神经网络的预训练,将其在ImageNet图像数据集上学到的知识迁移运用到多种农作物数... 应用深度学习的图像分析技术,可较早地、无损地检测作物病害,但移动端计算资源的有限性限制了深度学习在移动端的应用和发展。利用迁移学习方法,进行多种神经网络的预训练,将其在ImageNet图像数据集上学到的知识迁移运用到多种农作物数据集及番茄单作物数据集的多种病害识别上,并进行多个深度学习模型在多种作物数据集的计算复杂度、识别效果及计算速度的对比。通过对比发现:Xception模型的计算准确率比较高,计算复杂度稍复杂些;当应用场景对计算准确率的要求不是很高的情况下,ShuffleNet V20.5x模型在计算复杂程度、计算速度的综合表现相对较好,比较适合在移动端进行移植;接着,通过对ShuffleNet V20.5x采用ReLU和LeakyReLU激活函数进行训练和验证分析,发现当采用LeakyReLU激活函数替代原有的ReLU激活函数构建Shuffle Net V20.5x模型,可以改进Shuffle Net V20.5x模型,并能稍微提高识别的准确率,由85.6%提高到86.5%。最后将改进后的ShuffleNet V20.5x模型,移植到移动终端并进行测试。 展开更多
关键词 轻量级 神经网络 农作物病害识别 ShuffleNet算法
在线阅读 下载PDF
基于改进深度神经网络的农作物病害识别研究 被引量:2
11
作者 杨长磊 李彩林 +2 位作者 王佳文 孙延坤 苏本娅 《农业与技术》 2021年第6期1-3,共3页
针对农作物病害图像样本难收集的问题,本文采用迁移学习算法并结合深度学习提出了一种基于MobileNet的M25Net模型。通过对38类作物和1类背景图像的5.5万多幅农作物健康与病害图像进行训练,获得了农作物病害识别模型,其识别准确率可达99.... 针对农作物病害图像样本难收集的问题,本文采用迁移学习算法并结合深度学习提出了一种基于MobileNet的M25Net模型。通过对38类作物和1类背景图像的5.5万多幅农作物健康与病害图像进行训练,获得了农作物病害识别模型,其识别准确率可达99.67%。为了验证M25Net模型识别农作物病害类型的能力,分别与使用迁移学习的MobileNet、InceptionV1、InceptionV2、InceptionV3、ResNet 50、ResNet 101、ResNet 152模型进行对比试验,结果表明,M25Net模型比其它模型的识别精度提升了1.89%~4.86%,具有更高的分类精度,农作物病害类型识别的泛用性增强。 展开更多
关键词 农作物病害识别 深度学习 迁移学习 M25Net模型
在线阅读 下载PDF
基于改进VGG网络的农作物病害图像识别 被引量:16
12
作者 岳有军 李雪松 +1 位作者 赵辉 王红君 《农机化研究》 北大核心 2022年第6期18-24,共7页
随着计算机技术的飞速发展,使用机器视觉进行农作物病害识别成为了一种趋势。但是,当前农作物病害图像识别研究主要集中在提高其识别精度方面而很少考虑实际复杂自然条件下的鲁棒性研究。在实际复杂自然条件下,噪声和复杂自然条件背景... 随着计算机技术的飞速发展,使用机器视觉进行农作物病害识别成为了一种趋势。但是,当前农作物病害图像识别研究主要集中在提高其识别精度方面而很少考虑实际复杂自然条件下的鲁棒性研究。在实际复杂自然条件下,噪声和复杂自然条件背景会降低识别精度。为此,对VGG网络进行改进,将高阶残差和参数共享反馈子网络添加进VGG网络中,识别实际复杂自然条件下的农作物病害。农作物病害表观的特征表达由高阶残差子网络提供,高阶残差子网络使病害识别的准确率更高;病害图像深层特征中的背景噪声被参数共享反馈子网络削弱,使改进VGG网络具有更强的鲁棒性。实验分析表明:在实际大田环境中,此方法在识别精度和鲁棒性方面比SVM、AlexNET、ResNet-50、VGG-16效果更好。 展开更多
关键词 农作物病害识别 VGG网络 高阶残差子网络 参数共享反馈子网络
在线阅读 下载PDF
深度学习在农作物病害图像识别中的研究进展 被引量:13
13
作者 何雨霜 王琢 +3 位作者 王湘平 肖进 罗友谊 张俊峰 《中国农机化学报》 北大核心 2023年第2期148-155,共8页
农作物病害识别关乎作物的产量与质量,是智慧农业发展过程中必不可少的重要环节。随着深度学习技术在图像处理领域的飞速发展,利用深度学习从图像中识别出农作物患病类型的方法已逐渐成为主流。主要对基于深度学习的农作物病害识别方法... 农作物病害识别关乎作物的产量与质量,是智慧农业发展过程中必不可少的重要环节。随着深度学习技术在图像处理领域的飞速发展,利用深度学习从图像中识别出农作物患病类型的方法已逐渐成为主流。主要对基于深度学习的农作物病害识别方法进行综述,简要地介绍深度学习和卷积神经网络,收集一些常用的病害图像公开数据集。根据训练样本采集环境的不同,从实验室和野外两个方面概述近年来基于深度学习病害识别方法的进展,指出每种方法的优势与不足,总结出该研究领域存在数据量不足、任务难度大、深度学习模型网络结构复杂3个主要问题,并在此基础上进行展望,提出建立大规模、多种类、多类型病害数据库和设计高性能的深度学习模型是未来的重要发展方向。 展开更多
关键词 深度学习 农作物病害识别 卷积神经网络 图像识别
在线阅读 下载PDF
农作物病害图像识别研究进展和存在问题 被引量:3
14
作者 苏丹 邓永卓 《天津农学院学报》 CAS 2023年第3期75-79,共5页
针对卷积神经网络训练过程中耗费时间长以及大量参数设定等问题,提出采用卷积神经网络结合迁移学习实现智能、快速、准确识别农作物病害类型至关重要。本文首先介绍了农作物病害识别的发展进程,然后介绍了农作物病害识别方法的国内外研... 针对卷积神经网络训练过程中耗费时间长以及大量参数设定等问题,提出采用卷积神经网络结合迁移学习实现智能、快速、准确识别农作物病害类型至关重要。本文首先介绍了农作物病害识别的发展进程,然后介绍了农作物病害识别方法的国内外研究进展,同时分析了其在农作物病害识别上存在的优缺点,最后指出了目前农作物病害识别存在的环境、模型结构和硬件条件等问题,并对农作物病害识别未来的研究方向进行了展望。 展开更多
关键词 农作物病害识别 深度学习 迁移学习 研究进展
在线阅读 下载PDF
基于DDT算法和EfficientNet-B4的弱监督细粒度农作物病害图像分类
15
作者 徐妍 《农业技术与装备》 2021年第10期97-98,共2页
农作物病害分类是细粒度图像分类的一个热门领域。文章采用一种基于Co-Location的细粒度农作物病害分类方法,在模拟真实场景的MultiplePlant测试集下进行农作物病害的研究,比较各个网络在得到的模型的准确率结果为98.36%,证明该方法充... 农作物病害分类是细粒度图像分类的一个热门领域。文章采用一种基于Co-Location的细粒度农作物病害分类方法,在模拟真实场景的MultiplePlant测试集下进行农作物病害的研究,比较各个网络在得到的模型的准确率结果为98.36%,证明该方法充分保留了关键病害位置的特征信息,并且一定程度上能够抵抗噪声干扰。 展开更多
关键词 图像分类 农作物病害识别 协同定位 细粒度分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部