期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的农作物病害检测 被引量:23
1
作者 魏超 范自柱 +1 位作者 张泓 王松 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2019年第2期190-196,共7页
针对在大规模农业种植中传统人工农作物病虫害预防和治理上常存在的问题,应用深度学习算法来进行农作物病害的检测.对47 637张图片进行病害识别检测,数据包含10个物种(主要农作物有番茄、土豆、玉米等),27种病害,总共61个分类标签.采用... 针对在大规模农业种植中传统人工农作物病虫害预防和治理上常存在的问题,应用深度学习算法来进行农作物病害的检测.对47 637张图片进行病害识别检测,数据包含10个物种(主要农作物有番茄、土豆、玉米等),27种病害,总共61个分类标签.采用目前流行的深度网络结构如Vgg-16,ResNetV1-101和InceptionV4等6种模型对图像进行特征抽取.采用交叉熵和正则化项组成损失函数进行反向传播调整,对数据集进行4种不同情况的划分;并且使用了初始化和迁移训练两种训练方式,分别对6种网络架构在不同学习率下进行试验比较.结果表明:采用初始化训练对61类病害情况的最高识别准确率为84.6%;而在迁移训练中,使用合适的学习率训练,最高识别准确率达到86.1%;对3类疾病程度分类准确率为87.4%,对28种病害类型分类准确率为98.2%,对10类物种识别分类准确率为99.3%. 展开更多
关键词 农作物病害检测 图像处理 深度学习 卷积神经网络 特征抽取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部