期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的农作物病害检测
被引量:
23
1
作者
魏超
范自柱
+1 位作者
张泓
王松
《江苏大学学报(自然科学版)》
EI
CAS
北大核心
2019年第2期190-196,共7页
针对在大规模农业种植中传统人工农作物病虫害预防和治理上常存在的问题,应用深度学习算法来进行农作物病害的检测.对47 637张图片进行病害识别检测,数据包含10个物种(主要农作物有番茄、土豆、玉米等),27种病害,总共61个分类标签.采用...
针对在大规模农业种植中传统人工农作物病虫害预防和治理上常存在的问题,应用深度学习算法来进行农作物病害的检测.对47 637张图片进行病害识别检测,数据包含10个物种(主要农作物有番茄、土豆、玉米等),27种病害,总共61个分类标签.采用目前流行的深度网络结构如Vgg-16,ResNetV1-101和InceptionV4等6种模型对图像进行特征抽取.采用交叉熵和正则化项组成损失函数进行反向传播调整,对数据集进行4种不同情况的划分;并且使用了初始化和迁移训练两种训练方式,分别对6种网络架构在不同学习率下进行试验比较.结果表明:采用初始化训练对61类病害情况的最高识别准确率为84.6%;而在迁移训练中,使用合适的学习率训练,最高识别准确率达到86.1%;对3类疾病程度分类准确率为87.4%,对28种病害类型分类准确率为98.2%,对10类物种识别分类准确率为99.3%.
展开更多
关键词
农作物病害检测
图像处理
深度学习
卷积神经网络
特征抽取
在线阅读
下载PDF
职称材料
题名
基于深度学习的农作物病害检测
被引量:
23
1
作者
魏超
范自柱
张泓
王松
机构
华东交通大学理学院
出处
《江苏大学学报(自然科学版)》
EI
CAS
北大核心
2019年第2期190-196,共7页
基金
国家自然科学基金资助项目(61472138
61263032)
+1 种基金
江西省自然科学基金资助项目(20161BAB202066)
江西省交通运输厅科研项目(2015D0066)
文摘
针对在大规模农业种植中传统人工农作物病虫害预防和治理上常存在的问题,应用深度学习算法来进行农作物病害的检测.对47 637张图片进行病害识别检测,数据包含10个物种(主要农作物有番茄、土豆、玉米等),27种病害,总共61个分类标签.采用目前流行的深度网络结构如Vgg-16,ResNetV1-101和InceptionV4等6种模型对图像进行特征抽取.采用交叉熵和正则化项组成损失函数进行反向传播调整,对数据集进行4种不同情况的划分;并且使用了初始化和迁移训练两种训练方式,分别对6种网络架构在不同学习率下进行试验比较.结果表明:采用初始化训练对61类病害情况的最高识别准确率为84.6%;而在迁移训练中,使用合适的学习率训练,最高识别准确率达到86.1%;对3类疾病程度分类准确率为87.4%,对28种病害类型分类准确率为98.2%,对10类物种识别分类准确率为99.3%.
关键词
农作物病害检测
图像处理
深度学习
卷积神经网络
特征抽取
Keywords
crop disease detection
image processing
deep learning
convolutional neural network
feature extraction
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的农作物病害检测
魏超
范自柱
张泓
王松
《江苏大学学报(自然科学版)》
EI
CAS
北大核心
2019
23
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部