期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多模态融合大模型架构Agri-QA Net的作物知识问答系统
1
作者 吴华瑞 赵春江 李静晨 《智慧农业(中英文)》 2025年第1期1-10,共10页
[目的/意义]随着农业信息化和智能化的快速发展,多模态人机交互技术在农业领域的重要性日益凸显。本研究提出了一种基于多模态融合的大模型架构Agri-QA Net,旨在针对甘蓝作物的农业知识,设计多模态专业问答系统。[方法]该模型通过整合... [目的/意义]随着农业信息化和智能化的快速发展,多模态人机交互技术在农业领域的重要性日益凸显。本研究提出了一种基于多模态融合的大模型架构Agri-QA Net,旨在针对甘蓝作物的农业知识,设计多模态专业问答系统。[方法]该模型通过整合文本、音频和图片数据,利用预训练的BERT(Bidirectional Encoder Representations from Transformers)模型提取文本特征,声学模型提取音频特征,以及卷积神经网络提取图像特征,并采用基于Transformer的融合层来整合这些特征。此外,引入跨模态注意力机制和领域自适应技术,增强了模型对农业领域专业知识的理解和应用能力。本研究通过收集和预处理甘蓝种植相关的多模态数据,训练并优化了AgriQA Net模型。[结果和讨论]实验评估表明,该模型在甘蓝农业知识问答任务上表现出色,相较于传统的单模态或简单多模态模型,具有更高的准确率和更好的泛化能力。在多模态输入的支持下,其准确率达到了89.5%,精确率为87.9%,召回率为91.3%,F_(1)值为89.6%,均显著高于单一模态模型。[结论]案例研究展示了Agri-QA Net在实际农业场景中的应用效果,证明了其在帮助农民解决实际问题中的有效性。未来的工作将探索模型在更多农业场景中的应用,并进一步优化模型性能。 展开更多
关键词 多模态融合 人机交互 农业知识问答 甘蓝作物 大语言模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部