期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于学习速率与更新向量的混合云数据冗余值迭代算法 被引量:4
1
作者 张晓丽 《河南理工大学学报(自然科学版)》 CAS 北大核心 2020年第5期114-119,共6页
针对传统混合云数据冗余值迭代算法的平均回报值较低、收敛稳定性较差、收敛动作规模较小等问题,提出一种基于学习速率与更新向量的混合云数据冗余值迭代算法。首先,构建混合云数据冗余值值函数,在该函数中引入一个新的参数更新权重向量... 针对传统混合云数据冗余值迭代算法的平均回报值较低、收敛稳定性较差、收敛动作规模较小等问题,提出一种基于学习速率与更新向量的混合云数据冗余值迭代算法。首先,构建混合云数据冗余值值函数,在该函数中引入一个新的参数更新权重向量,基于深度学习中学习速率要求,获取值函数的稳定值;其次,依据获取的稳定值计算值函数稳定值向量,利用新权值处理稳定值向量,获取值函数更新向量;最后,对权值增量进行计算,结合哈希表完成混合云数据冗余值的迭代研究。实验结果表明,该算法的平均回报值最高,且收敛速度最快。 展开更多
关键词 学习速率 更新向量 深度学习 混合云数据 冗余值迭代算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部