The hot deformation behaviors of Cr5 steel were investigated.The hot compression tests were conducted in the temperature range of 900-1150 °C under strain rates of 0.01,0.1 and 1 s^(-1).The constitutive equation ...The hot deformation behaviors of Cr5 steel were investigated.The hot compression tests were conducted in the temperature range of 900-1150 °C under strain rates of 0.01,0.1 and 1 s^(-1).The constitutive equation and material constants(Q,n,α ln A) are obtained according to the hyperbolic sine function and Zener-Hollomon parameter.Besides,dynamic recrystallization(DRX) grain size model and critical strain model are acquired.The processing maps with the strain of 0.1,0.3 and 0.5 are obtained on the basis of dynamic materials model.It has been observed that DRX occurs at high temperature and low strain rate.According to the processing map,the safety region exists in the temperature range of 920-1150 °C with strain rate of 0.01-0.20 s^(-1).展开更多
High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material...High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.展开更多
基金Project(51322405)supported by the National Natural Science Foundation of China
文摘The hot deformation behaviors of Cr5 steel were investigated.The hot compression tests were conducted in the temperature range of 900-1150 °C under strain rates of 0.01,0.1 and 1 s^(-1).The constitutive equation and material constants(Q,n,α ln A) are obtained according to the hyperbolic sine function and Zener-Hollomon parameter.Besides,dynamic recrystallization(DRX) grain size model and critical strain model are acquired.The processing maps with the strain of 0.1,0.3 and 0.5 are obtained on the basis of dynamic materials model.It has been observed that DRX occurs at high temperature and low strain rate.According to the processing map,the safety region exists in the temperature range of 920-1150 °C with strain rate of 0.01-0.20 s^(-1).
基金Project(52274369)supported by the National Natural Science Foundation of China。
文摘High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.