针对风速时间序列的非线性和非平稳性,提出一种基于局域均值分解(Local Mean Decomposition,LMD)和多核最小二乘支持向量机的短期风速预测模型。该方法首先对LMD对风速时间序列进行多层分解,得到一系列的PF(Product Function,PF)分量;...针对风速时间序列的非线性和非平稳性,提出一种基于局域均值分解(Local Mean Decomposition,LMD)和多核最小二乘支持向量机的短期风速预测模型。该方法首先对LMD对风速时间序列进行多层分解,得到一系列的PF(Product Function,PF)分量;然后运用多核最小二乘支持向量机模型对分解后的各PF分量风速进行预测;最后对各预测结果进行叠加作为最终的预测风速。算例结果表明,该预测模型能准确进行短期风速的预测。展开更多
为了快速、准确地对高压断路器发生的故障进行分析和诊断,确定故障的性质、类别和部位,提出了一种高压断路器故障诊断的新方法。首先对高压断路器分合闸线圈电流进行分析,提取电流和时间特征量形成特征向量,然后用遗传算法对最小二乘支...为了快速、准确地对高压断路器发生的故障进行分析和诊断,确定故障的性质、类别和部位,提出了一种高压断路器故障诊断的新方法。首先对高压断路器分合闸线圈电流进行分析,提取电流和时间特征量形成特征向量,然后用遗传算法对最小二乘支持向量机(least square support vector machine,LS-SVM)参数进行优化,最后,将特征向量输入到优化后的最小二乘支持向量机中进行故障识别、分类。试验表明,该方法可以准确地识别断路器的多种故障类型,为断路器故障定位和状态检修提供了依据。与广泛使用的神经网络方法相比,该方法在样本较少时仍能获得较好的诊断效果,更适用于高压断路器等小样本设备的故障诊断。展开更多
文摘针对风速时间序列的非线性和非平稳性,提出一种基于局域均值分解(Local Mean Decomposition,LMD)和多核最小二乘支持向量机的短期风速预测模型。该方法首先对LMD对风速时间序列进行多层分解,得到一系列的PF(Product Function,PF)分量;然后运用多核最小二乘支持向量机模型对分解后的各PF分量风速进行预测;最后对各预测结果进行叠加作为最终的预测风速。算例结果表明,该预测模型能准确进行短期风速的预测。
文摘为了快速、准确地对高压断路器发生的故障进行分析和诊断,确定故障的性质、类别和部位,提出了一种高压断路器故障诊断的新方法。首先对高压断路器分合闸线圈电流进行分析,提取电流和时间特征量形成特征向量,然后用遗传算法对最小二乘支持向量机(least square support vector machine,LS-SVM)参数进行优化,最后,将特征向量输入到优化后的最小二乘支持向量机中进行故障识别、分类。试验表明,该方法可以准确地识别断路器的多种故障类型,为断路器故障定位和状态检修提供了依据。与广泛使用的神经网络方法相比,该方法在样本较少时仍能获得较好的诊断效果,更适用于高压断路器等小样本设备的故障诊断。