期刊文献+
共找到216篇文章
< 1 2 11 >
每页显示 20 50 100
基于马氏距离的密度加权最小二乘孪生支持向量机
1
作者 吕莉 贺智鹏 +3 位作者 张法滢 张莹莹 康平 李院民 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期37-48,共12页
最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支... 最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支持向量机.该算法利用马氏距离替换欧氏距离构造密度加权策略,充分考虑点与分布的关系,给予噪声数据较低的权重,降低算法对噪声的敏感性;同时结合马氏距离核函数计算样本内协方差矩阵,消除样本特征值之间方差的差异,更准确地体现样本间的相关性,从而优化决策超平面.实验采用人工数据集和UCI数据集,实验结果表明:该算法比同类型分类算法具有更高的分类精确度和泛化能力,能够有效区分在样本中的噪声数据并赋予合适的权重值,提升分类器的鲁棒性. 展开更多
关键词 支持向量 马氏距离 函数 密度加权 最小二乘损失函数
在线阅读 下载PDF
用于水泥熟料fCaO预测的多核最小二乘支持向量机模型 被引量:11
2
作者 赵朋程 刘彬 +2 位作者 高伟 赵志彪 王美琪 《化工学报》 EI CAS CSCD 北大核心 2016年第6期2480-2487,共8页
针对水泥熟料游离氧化钙(fCaO)含量预测模型辨识的问题,考虑到单一核函数无法显著提高模型精度,采用多项式核函数、指数径向基核函数和高斯径向基核函数组合构建等价核的方法,建立了多核最小二乘支持向量机水泥熟料fCaO预测模型。同时,... 针对水泥熟料游离氧化钙(fCaO)含量预测模型辨识的问题,考虑到单一核函数无法显著提高模型精度,采用多项式核函数、指数径向基核函数和高斯径向基核函数组合构建等价核的方法,建立了多核最小二乘支持向量机水泥熟料fCaO预测模型。同时,利用改进的粒子群优化算法对多核最小二乘支持向量机模型的6个待确定参数进行迭代寻优,避免了模型参数人工选取的盲目性。最后将基于改进粒子群的多核最小二乘支持向量机模型应用于熟料fCaO含量的实例仿真。结果表明,建立的水泥熟料fCaO含量预测模型精度高、泛化能力强。 展开更多
关键词 学习 最小乘支持向量 模型 优化 算法 扰动
在线阅读 下载PDF
基于核主元分析和最小二乘支持向量机的中速磨煤机故障诊断 被引量:27
3
作者 刘定平 叶向荣 +1 位作者 陈斌源 汤美玉 《动力工程》 CAS CSCD 北大核心 2009年第2期155-158,共4页
为了对火电厂磨煤机作出早期故障预测并有效判别其故障类型,提出了基于核主元分析(KPCA)和最小二乘支持向量机(LSSVM)的磨煤机故障诊断新方法,并采用该方法对某电厂的HP碗式中速磨煤机的故障特征数据进行了仿真试验.结果表明:该方法可... 为了对火电厂磨煤机作出早期故障预测并有效判别其故障类型,提出了基于核主元分析(KPCA)和最小二乘支持向量机(LSSVM)的磨煤机故障诊断新方法,并采用该方法对某电厂的HP碗式中速磨煤机的故障特征数据进行了仿真试验.结果表明:该方法可提取变量的特征信息,以有效地捕捉变量间的非线性关系,从而能有效地处理故障征兆与故障类型之间的不确定性,具有很好的分辨力,而且故障诊断的正确率很高. 展开更多
关键词 中速磨煤 故障诊断 最小乘支持向量 主元分析
在线阅读 下载PDF
基于稀疏多核最小二乘支持向量机的浮选关键指标软测量 被引量:13
4
作者 阳春华 任会峰 +1 位作者 许灿辉 桂卫华 《中国有色金属学报》 EI CAS CSCD 北大核心 2011年第12期3149-3154,共6页
由于浮选性能受多种因素的制约,适宜的矿浆pH值是高效泡沫浮选的关键。针对pH值在线检测仪易受干扰、维护保养成本高等不足,结合泡沫浮选过程机理分析,以泡沫视频图像特征为辅助变量,将局部核函数和全局核函数加权组合,提高模型的学习... 由于浮选性能受多种因素的制约,适宜的矿浆pH值是高效泡沫浮选的关键。针对pH值在线检测仪易受干扰、维护保养成本高等不足,结合泡沫浮选过程机理分析,以泡沫视频图像特征为辅助变量,将局部核函数和全局核函数加权组合,提高模型的学习和泛化能力,利用Schmidt正交化理论约简多核矩阵,减小计算量,建立基于稀疏多核最小二乘支持向量机的浮选矿浆pH值软测量模型。工业运行数据测试结果表明:所建模型具有预测精度高、反应迅速、稳定性好等优点,适于工业应用。 展开更多
关键词 PH值 软测量 最小乘支持向量 稀疏性 泡沫浮选
在线阅读 下载PDF
基于核主元分析和最小二乘支持向量机的软测量建模 被引量:23
5
作者 徐晔 杜文莉 钱锋 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第17期3873-3875,3918,共4页
软测量技术是工业过程控制和分析的有力工具,它的核心问题是如何建立学习速度快且泛化性能优良的软测量模型。提出了一种基于核主元分析(KPCA)和最小二乘支持向量机(LSSVM)的软测量建模方法,利用核主元分析提取软测量输入数据空间中的... 软测量技术是工业过程控制和分析的有力工具,它的核心问题是如何建立学习速度快且泛化性能优良的软测量模型。提出了一种基于核主元分析(KPCA)和最小二乘支持向量机(LSSVM)的软测量建模方法,利用核主元分析提取软测量输入数据空间中的非线性主元,然后用最小二乘支持向量机进行建模,不但降低模型复杂性,而且提高了模型泛化能力。最后将上述方法用于PTA结晶过程的软测量建模,仿真结果表明:与SVM、PCA-SVM建模方法相比,该KPCA-LSSVM方法具有学习速度快、跟踪性能好、泛化能力强等优点,是一种有效的软测量建模方法。 展开更多
关键词 软测量 主元分析 最小乘支持向量 建模
在线阅读 下载PDF
基于聚类核函数的最小二乘支持向量机高光谱图像半监督分类 被引量:6
6
作者 高恒振 万建伟 +1 位作者 许可 钱林杰 《信号处理》 CSCD 北大核心 2011年第2期276-280,共5页
针对大规模的高光谱数据分类,为了利用未标签样本所含信息,来提升分类器性能,提出了一种半监督分类算法。该算法根据聚类假设,即属于同一类地物的样本点在聚类中被分为同一类的可能性较大的原则来改进核函数,采用基于光谱角度量的K均值... 针对大规模的高光谱数据分类,为了利用未标签样本所含信息,来提升分类器性能,提出了一种半监督分类算法。该算法根据聚类假设,即属于同一类地物的样本点在聚类中被分为同一类的可能性较大的原则来改进核函数,采用基于光谱角度量的K均值聚类算法对样本集进行聚类,根据多次聚类的结果,构造包袋核函数,然后利用加法和乘法运算将包袋核函数和RBF核函数组合成新的核函数,从而把未标签样本信息融入分类器。而且采用最小二乘支持向量机,将标准支持向量机的二次规划问题转换为求解线性方程组的问题。高光谱实测数据实验表明了本文方法的优越性。 展开更多
关键词 半监督 最小二乘 聚类 函数 支持向量
在线阅读 下载PDF
基于局域均值分解和多核最小二乘支持向量机的短期风速预测 被引量:8
7
作者 孙斌 姚海涛 《太阳能学报》 EI CAS CSCD 北大核心 2013年第9期1567-1573,共7页
针对风速时间序列的非线性和非平稳性,提出一种基于局域均值分解(Local Mean Decomposition,LMD)和多核最小二乘支持向量机的短期风速预测模型。该方法首先对LMD对风速时间序列进行多层分解,得到一系列的PF(Product Function,PF)分量;... 针对风速时间序列的非线性和非平稳性,提出一种基于局域均值分解(Local Mean Decomposition,LMD)和多核最小二乘支持向量机的短期风速预测模型。该方法首先对LMD对风速时间序列进行多层分解,得到一系列的PF(Product Function,PF)分量;然后运用多核最小二乘支持向量机模型对分解后的各PF分量风速进行预测;最后对各预测结果进行叠加作为最终的预测风速。算例结果表明,该预测模型能准确进行短期风速的预测。 展开更多
关键词 短期风速 预测 局域均值分解 最小乘支持向量
在线阅读 下载PDF
尺度核函数在最小二乘支持向量机信号逼近中的应用 被引量:3
8
作者 穆向阳 张太镒 周亚同 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第12期1464-1467,1480,共5页
针对目前常采用高斯核的最小二乘支持向量机(LS-SVM)不能对信号多尺度逼近的问题,提出一种采用尺度核的LS-SVM.首先,在再生核希尔伯特空间的框架下构建了一种点积型的尺度核函数,它满足Mercer条件,并具备平移和扩张的特性,是尺度子空间... 针对目前常采用高斯核的最小二乘支持向量机(LS-SVM)不能对信号多尺度逼近的问题,提出一种采用尺度核的LS-SVM.首先,在再生核希尔伯特空间的框架下构建了一种点积型的尺度核函数,它满足Mercer条件,并具备平移和扩张的特性,是尺度子空间的一组完备的基.然后,利用拉格朗日乘子法求解LS-SVM逼近的约束规划问题,在结构风险最小化逼近准则下获得了逼近系数.与传统核函数相比,采用尺度核的LS-SVM可以实现多尺度逼近任意信号,且应用时仅需对尺度参数调节选优,简便、实用.实验结果表明:所提算法的逼近性能与小波核性能相当;与传统的高斯核函数相比,其均方根误差提高8.4%. 展开更多
关键词 最小乘支持向量 尺度 信号逼近
在线阅读 下载PDF
基于核主成分-最小二乘支持向量机的区域物流需求预测 被引量:7
9
作者 梁毅刚 耿立艳 张占福 《铁道运输与经济》 北大核心 2012年第11期63-67,共5页
概述区域物流需求预测方法,分别阐明核主成分分析(KPCA)和最小二乘支持向量机(LSSVM)模型的原理,提出将核主成分分析(KPCA)与最小二乘支持向量机(LSSVM)相结合,建立核主成分-最小二乘支持向量机(KPCA-LSSVM)预测模型。先利用KPCA对数据... 概述区域物流需求预测方法,分别阐明核主成分分析(KPCA)和最小二乘支持向量机(LSSVM)模型的原理,提出将核主成分分析(KPCA)与最小二乘支持向量机(LSSVM)相结合,建立核主成分-最小二乘支持向量机(KPCA-LSSVM)预测模型。先利用KPCA对数据进行预处理,消除变量之间的相关性,提取非线性主成分,再通过LSSVM对提取的非线性主成分进行训练,建立预测模型。最后,通过实例验证比较LSSVM与KPCA-LSSVM两种模型的预测性能。结果表明,KPCA-LSSVM的预测精度较LSSVM明显提高,是一种有效的中短期区域物流需求预测方法。 展开更多
关键词 区域物流 需求预测 最小乘支持向量 主成分分析
在线阅读 下载PDF
基于多核对称最小二乘支持向量机的永磁同步电机混沌建模 被引量:2
10
作者 陈强 任雪梅 《北京理工大学学报》 EI CAS CSCD 北大核心 2011年第2期144-148,共5页
针对永磁同步电机在一定情况下呈现混沌特性且混沌模型难以精确获得的情况,提出了一种基于多核对称最小二乘支持向量机的回归建模方法.在最小二乘支持向量机模型中增加对称性的约束条件,构成对称最小二乘支持向量机.将多核学习的方法与... 针对永磁同步电机在一定情况下呈现混沌特性且混沌模型难以精确获得的情况,提出了一种基于多核对称最小二乘支持向量机的回归建模方法.在最小二乘支持向量机模型中增加对称性的约束条件,构成对称最小二乘支持向量机.将多核学习的方法与对称最小二乘支持向量机相结合,构造由多个基本核函数线性组合而成的新的等价核,用于建立永磁同步电机的混沌回归模型.仿真结果表明,与一般最小二乘支持向量机相比,该方法能够降低单个核函数的选择对建模精度的影响,提高混沌建模精度. 展开更多
关键词 永磁同步电 混沌建模 学习 对称最小乘支持向量
在线阅读 下载PDF
基于移动窗的多核最小二乘支持向量机建模算法 被引量:1
11
作者 李琦 杜晓东 +1 位作者 张洪略 邢丽萍 《大连理工大学学报》 EI CAS CSCD 北大核心 2017年第5期511-516,共6页
针对时变工业过程建模中存在的模型泛化性和适应性较低的问题,利用移动窗技术,通过使用多个核函数,提出了一种基于移动窗的多核最小二乘支持向量机(LSSVM)建模算法.该算法在最小二乘支持向量机算法基础上,利用多核组合代替单核,增强了... 针对时变工业过程建模中存在的模型泛化性和适应性较低的问题,利用移动窗技术,通过使用多个核函数,提出了一种基于移动窗的多核最小二乘支持向量机(LSSVM)建模算法.该算法在最小二乘支持向量机算法基础上,利用多核组合代替单核,增强了模型的泛化能力;利用移动窗技术,增加了模型对时变工业过程的动态辨识能力及模型的更新效率.仿真实验结果表明,该算法具有更好的泛化性能. 展开更多
关键词 动态建模 函数 最小乘支持向量(LSSVM) 移动窗
在线阅读 下载PDF
基于核偏最小二乘的支持向量机回归算法研究 被引量:6
12
作者 邹永杰 端木京顺 高海龙 《计算机工程与设计》 CSCD 北大核心 2010年第10期2290-2293,共4页
对SVM的特征提取问题进行了研究,提出了KPLS-SVM组合回归建模方法。该方法在输入空间映射得到的高维特征空间中进行PLS特征提取后,再进行SVM回归,不仅保持了SVM良好的模型性能,并且兼具KPLS和SVM的优点。仿真和实验结果表明,该KPLS-SVM... 对SVM的特征提取问题进行了研究,提出了KPLS-SVM组合回归建模方法。该方法在输入空间映射得到的高维特征空间中进行PLS特征提取后,再进行SVM回归,不仅保持了SVM良好的模型性能,并且兼具KPLS和SVM的优点。仿真和实验结果表明,该KPLS-SVM建模方法是正确且有效的,采用该方法构建的SVM模型,泛化性能明显优于没有特征提取的SVM。 展开更多
关键词 函数 最小二乘 支持向量 泛化能力 特征提取 特征空间
在线阅读 下载PDF
基于优化组合核最小二乘支持向量机的脉动风速预测 被引量:4
13
作者 徐言沁 李春祥 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期627-633,共7页
将B(包括B1,B3和B5)样条核函数和径向基(radial basic function,RBF)核函数进行线性组合,构造B-RBF组合核函数,进而提出基于粒子群优化B-RBF核的最小二乘支持向量机(least squares support vector machine,LSSVM).在脉动风速预测中,运... 将B(包括B1,B3和B5)样条核函数和径向基(radial basic function,RBF)核函数进行线性组合,构造B-RBF组合核函数,进而提出基于粒子群优化B-RBF核的最小二乘支持向量机(least squares support vector machine,LSSVM).在脉动风速预测中,运用粒子群优化(particle swarm optimization,PSO)算法对B-RBF-LSSVM模型的惩罚参数和核函数参数进行智能优化.同时给出PSO-RBF-LSSVM的数值预测结果进行比较.数值分析表明,PSO-B3-RBF-LSSVM比PSO-B1-RBF-LSSVM,PSO-B5-RBF-LSSVM和PSORBF-LSSVM具有更高的预测性能. 展开更多
关键词 B样条函数 组合函数 最小乘支持向量 粒子群优化 脉动风速
在线阅读 下载PDF
基于改进自适应粒子群算法的混合核函数最小二乘支持向量机大坝变形预测 被引量:11
14
作者 梁耀东 栾元重 +2 位作者 刘方雨 纪赵磊 庄艳 《科学技术与工程》 北大核心 2021年第1期47-52,共6页
针对大坝变形影响因素的复杂性以及监测数据的非线性、随机波动大和预测难度大等问题,提出一种改进自适应粒子群(particle swarm,PSO)算法的混合核函数最小二乘支持向量机(least squares support vector machine,LSSVM)模型,实现了大坝... 针对大坝变形影响因素的复杂性以及监测数据的非线性、随机波动大和预测难度大等问题,提出一种改进自适应粒子群(particle swarm,PSO)算法的混合核函数最小二乘支持向量机(least squares support vector machine,LSSVM)模型,实现了大坝水平变形的时间序列预测方法。基于Mercer理论,将多项式核函数和高斯核函数进行线性组合,构建混合核函数,作为LSSVM模型的核函数,并以特征因子与大坝变形间的相互联系为基础,采用动态自适应惯性权重的PSO算法,对混合核函数的LSSVM模型进行参数寻优,以确保建立最佳LSSVM预测模型。将模型应用于丰满大坝,并与传统多项式核函数和传统高斯核函数的LSSVM模型进行对比仿真实验,对所提方法的有效性和准确性进行验证评估。结果表明,该模型在预测精度上有了明显提高,预测性能尤佳。可见改进自适应粒子群的混合核函数LSSVM模型对大坝变形的时间序列预测有良好的实用价值。 展开更多
关键词 混合函数 大坝变形预测 最小乘支持向量(LSSVM) 自适应粒子群算法 水平位移
在线阅读 下载PDF
基于多核学习的风格正则化最小二乘支持向量机 被引量:1
15
作者 沈浩 王士同 《计算机科学与探索》 CSCD 北大核心 2020年第9期1532-1544,共13页
当前的多核学习方法结合了不同核函数在对数据的物理特性表示上的能力,但在风格化数据集中不能充分利用样本中所隐含的风格信息。由此,提出应用于风格化数据的基于多核学习的风格正则化最小二乘支持向量机(MK-SRLSSVM)。算法利用风格转... 当前的多核学习方法结合了不同核函数在对数据的物理特性表示上的能力,但在风格化数据集中不能充分利用样本中所隐含的风格信息。由此,提出应用于风格化数据的基于多核学习的风格正则化最小二乘支持向量机(MK-SRLSSVM)。算法利用风格转换矩阵表示包含在样本中的风格信息,并在目标函数中对其进行正则化处理,通过常用的交替优化方法对目标函数进行优化,在迭代过程中同步更新风格转换矩阵和分类器参数。为在预测过程中利用已学习的风格信息,在传统预测方法中增加了两种新的规则,在分类之前预先使用风格转换矩阵对样本风格进行标准化处理。所提出的分类器不仅利用了现有多核学习算法在表示样本的物理特征方面的优势,同时有效挖掘了数据集内包含的风格信息以提高分类性能,在风格化数据集中的实验结果证明了算法的有效性。 展开更多
关键词 最小乘支持向量(LSSVM) 学习 风格化数据 风格信息
在线阅读 下载PDF
基于压缩感知的多核稀疏最小二乘支持向量机 被引量:6
16
作者 吴青 臧博研 +1 位作者 祁宗仙 张昱 《系统工程与电子技术》 EI CSCD 北大核心 2019年第9期1930-1936,共7页
为了提高稀疏最小二乘支持向量机对高维、异构数据的泛化性能,提出新型的基于压缩感知的稀疏多核最小二乘支持向量机算法。首先根据压缩感知理论,用正交匹配追踪算法对最小二乘支持向量机的支持向量进行稀疏化,再利用线性多核扩展法求... 为了提高稀疏最小二乘支持向量机对高维、异构数据的泛化性能,提出新型的基于压缩感知的稀疏多核最小二乘支持向量机算法。首先根据压缩感知理论,用正交匹配追踪算法对最小二乘支持向量机的支持向量进行稀疏化,再利用线性多核扩展法求出新的核函数矩阵。将新的核矩阵应用到最小二乘支持向量机,得到稀疏多核最小二乘支持向量机的解,用稀疏的支持向量实现函数回归。理论分析与数据实验对比结果表明该模型对于高维、异构数据能够更快更准确地进行训练,大大提高了模型的泛化能力和运算速度。 展开更多
关键词 最小二乘 支持向量 压缩感知 稀疏化 扩展
在线阅读 下载PDF
基于主成分分析和最小二乘支持向量机的电力系统状态估计 被引量:18
17
作者 贾嵘 蔡振华 +2 位作者 刘晶 王小宇 杨可 《电网技术》 EI CSCD 北大核心 2006年第21期75-77,98,共4页
电力系统状态估计在能量管理系统中起着非常重要的作用,作者提出了基于主成分分析和最小二乘支持向量机的状态估计方法。首先对由量测量组成的初始样本进行主成分分析,对初始样本进行数据压缩和特征提取,消除数据间的相关性,提取出包含... 电力系统状态估计在能量管理系统中起着非常重要的作用,作者提出了基于主成分分析和最小二乘支持向量机的状态估计方法。首先对由量测量组成的初始样本进行主成分分析,对初始样本进行数据压缩和特征提取,消除数据间的相关性,提取出包含初始样本足够信息的主成分,然后将提取出的主成分作为最小二乘支持向量机的输入,降低了样本空间的维数。算例结果表明了所提出方法能有效地提高电力系统状态估计的精度。 展开更多
关键词 主成分分析 最小乘支持向量 状态估计 电力系统 函数
在线阅读 下载PDF
最小二乘隐空间支持向量机 被引量:12
18
作者 王玲 薄列峰 +1 位作者 刘芳 焦李成 《计算机学报》 EI CSCD 北大核心 2005年第8期1302-1307,共6页
在隐空间中采用最小二乘损失函数,提出了最小二乘隐空间支持向量机(LSHSSVMs).同隐空间支持向量机(HSSVMs)一样,最小二乘隐空间支持向量机不需要核函数满足正定条件,从而扩展了支持向量机核函数的选择范围.由于采用了最小二乘损失函数,... 在隐空间中采用最小二乘损失函数,提出了最小二乘隐空间支持向量机(LSHSSVMs).同隐空间支持向量机(HSSVMs)一样,最小二乘隐空间支持向量机不需要核函数满足正定条件,从而扩展了支持向量机核函数的选择范围.由于采用了最小二乘损失函数,最小二乘隐空间支持向量机产生的优化问题为无约束凸二次规划,这比隐空间支持向量机产生的约束凸二次规划更易求解.仿真实验结果表明所提算法在计算时间和推广能力上较隐空间支持向量机存在一定的优势. 展开更多
关键词 最小二乘隐空问支持向量 隐空间支持向量 支持向量 最小乘支持向量 函数
在线阅读 下载PDF
最小二乘小波支持向量机在非线性系统辨识中的应用 被引量:44
19
作者 崔万照 朱长纯 +1 位作者 保文星 刘君华 《西安交通大学学报》 EI CAS CSCD 北大核心 2004年第6期562-565,586,共5页
基于小波分解和支持向量核函数的条件,提出了一种多维允许支持向量小波核函数.该核函数不仅是近似正交的,而且适用于信号的局部分析、信噪分离和突变信号的检测,从而提高了支持向量机的泛化能力.基于小波核函数和正则化理论提出了最小... 基于小波分解和支持向量核函数的条件,提出了一种多维允许支持向量小波核函数.该核函数不仅是近似正交的,而且适用于信号的局部分析、信噪分离和突变信号的检测,从而提高了支持向量机的泛化能力.基于小波核函数和正则化理论提出了最小二乘小波支持向量机(LS WSVM)并将LS WSVM用于非线性系统的辨识,提高了辨识效果,减少了计算量.仿真结果表明:LS WSVM在同等条件下比传统支持向量机的辨识精度提高约13 1%,因而更适合于工程应用. 展开更多
关键词 小波函数 最小二乘小波支持向量 非线性系统辨识
在线阅读 下载PDF
基于最小二乘支持向量机的高压断路器故障诊断 被引量:32
20
作者 张卫正 李永丽 姚创 《高压电器》 CAS CSCD 北大核心 2015年第12期79-83,共5页
为了快速、准确地对高压断路器发生的故障进行分析和诊断,确定故障的性质、类别和部位,提出了一种高压断路器故障诊断的新方法。首先对高压断路器分合闸线圈电流进行分析,提取电流和时间特征量形成特征向量,然后用遗传算法对最小二乘支... 为了快速、准确地对高压断路器发生的故障进行分析和诊断,确定故障的性质、类别和部位,提出了一种高压断路器故障诊断的新方法。首先对高压断路器分合闸线圈电流进行分析,提取电流和时间特征量形成特征向量,然后用遗传算法对最小二乘支持向量机(least square support vector machine,LS-SVM)参数进行优化,最后,将特征向量输入到优化后的最小二乘支持向量机中进行故障识别、分类。试验表明,该方法可以准确地识别断路器的多种故障类型,为断路器故障定位和状态检修提供了依据。与广泛使用的神经网络方法相比,该方法在样本较少时仍能获得较好的诊断效果,更适用于高压断路器等小样本设备的故障诊断。 展开更多
关键词 高压断路器 分合闸线圈电流 故障诊断 最小乘支持向量(ls-svm) 遗传算法
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部