Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recover...Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recovery ventilator and to investigate the effect of the air supply arrangement. Three types of mixing ventilation are chosen for the analysis of coupling ANSYS/FLUENT (a computational fluid dynamics (CFD) program) with TRNSYS (a building energy simulation (BES) software). The adoption of mutual complementary boundary conditions for CFD and BES provides more accurate and complete information of indoor air distribution and thermal performance in buildings. A typical office-space situated in a middle storey is chosen for the analysis. The office-space is equipped with air-conditioners on the ceiling. A heat recovery ventilation system directly supplies flesh air to the office space. Its thermal performance and indoor air distribution predicted by the coupled method are compared under three types of ventilation system. When the supply and return openings for ventilation are arranged on the ceiling, there is no critical difference between the predictions of the coupled method and BES on the energy consumption of HVAC because PID control is adopted for the supply air temperature of the occupied zone. On the other hand, approximately 21% discrepancy for the heat recovery estimation in the maximum between the simulated results of coupled method and BES-only can be obviously found in the floor air supply ventilation case. The discrepancy emphasizes the necessity of coupling CFD with BES when vertical air temperature gradient exists. Our future target is to estimate the optimum design of heat recovery ventilation system to control CO2 concentration by adjusting flow rate of flesh air.展开更多
Based on the fact that the house dust usually falls on the ground, the floor level slit exhaust ventilation system including inlet located at the ceiling and outlet of slit exhaust installed at comer between wall and ...Based on the fact that the house dust usually falls on the ground, the floor level slit exhaust ventilation system including inlet located at the ceiling and outlet of slit exhaust installed at comer between wall and floor was considered. Experiments and simulations were performed to investigate the flow and diffusion fields that are affected by this floor level slit exhaust ventilation system. The characteristics of airflow with experiments and computation fluid dynamics (CFD) are generally similar except airflow at the location of impinging flow and the location right below the inlet. Riboflavin particles were used as the house dust. For the spatial distribution of riboflavin particles in the ventilation system before operation, due to the influence of gravity, different sizes of particles show smooth decay curve. After floor level slit exhaust ventilation system is operated, the decay rate of the particles becomes faster than that after the ventilation system is powered on, and the particles with diameter of 0.5-3.0 μm in the experimental data and calculated values show good agreement.展开更多
基金Project supported by Grant-in-Aid for Scientific Research (JSPS KAKENHI for Young Scientists (S), 21676005)
文摘Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recovery ventilator and to investigate the effect of the air supply arrangement. Three types of mixing ventilation are chosen for the analysis of coupling ANSYS/FLUENT (a computational fluid dynamics (CFD) program) with TRNSYS (a building energy simulation (BES) software). The adoption of mutual complementary boundary conditions for CFD and BES provides more accurate and complete information of indoor air distribution and thermal performance in buildings. A typical office-space situated in a middle storey is chosen for the analysis. The office-space is equipped with air-conditioners on the ceiling. A heat recovery ventilation system directly supplies flesh air to the office space. Its thermal performance and indoor air distribution predicted by the coupled method are compared under three types of ventilation system. When the supply and return openings for ventilation are arranged on the ceiling, there is no critical difference between the predictions of the coupled method and BES on the energy consumption of HVAC because PID control is adopted for the supply air temperature of the occupied zone. On the other hand, approximately 21% discrepancy for the heat recovery estimation in the maximum between the simulated results of coupled method and BES-only can be obviously found in the floor air supply ventilation case. The discrepancy emphasizes the necessity of coupling CFD with BES when vertical air temperature gradient exists. Our future target is to estimate the optimum design of heat recovery ventilation system to control CO2 concentration by adjusting flow rate of flesh air.
基金Project supported by Ministry of Land, Infrastructure, Transport and Tourism of Japan Project(DUT10RC(3)103) supported by the Fundamental Research Funds for the Central Universities in China+2 种基金 Project(20111027) supported by the Liaoning Provincial Scientific Research Foundation, China Key Project (2012BAJ02B05) supported by the Twelfth Five-Year National Technology Program of China Project supported by Dalian Municipal Construction Technology Program, China
文摘Based on the fact that the house dust usually falls on the ground, the floor level slit exhaust ventilation system including inlet located at the ceiling and outlet of slit exhaust installed at comer between wall and floor was considered. Experiments and simulations were performed to investigate the flow and diffusion fields that are affected by this floor level slit exhaust ventilation system. The characteristics of airflow with experiments and computation fluid dynamics (CFD) are generally similar except airflow at the location of impinging flow and the location right below the inlet. Riboflavin particles were used as the house dust. For the spatial distribution of riboflavin particles in the ventilation system before operation, due to the influence of gravity, different sizes of particles show smooth decay curve. After floor level slit exhaust ventilation system is operated, the decay rate of the particles becomes faster than that after the ventilation system is powered on, and the particles with diameter of 0.5-3.0 μm in the experimental data and calculated values show good agreement.