针对传统图像处理算法对钢铁表面缺陷检测存在识别效率低、漏检误检率高等问题,提出了YOLOv8-DSG(Deformable Convolution Network Squeeze and Excitation Network Generalized Intersection over Union)钢铁表面缺陷检测算法。在传统Y...针对传统图像处理算法对钢铁表面缺陷检测存在识别效率低、漏检误检率高等问题,提出了YOLOv8-DSG(Deformable Convolution Network Squeeze and Excitation Network Generalized Intersection over Union)钢铁表面缺陷检测算法。在传统YOLOv8算法的基础上,首先在Backbone网络的C2f(Convolution to Feature)模块中嵌入了可变形卷积网络DCN(Deformable Convolution Network),增强了模型在复杂背景条件下的特征提取能力;其次,在Neck网络中引入了SE(Squeeze and Excitation Network)注意力模块,突出钢铁表面重要特征信息,提升了特征融合的丰富性;最后,利用GIOU(Generalized Intersection Over Union)损失函数代替原有的CIOU(Complete Intersection Over Union),相比CIOU,GIOU引入了最小包围框面积比率,可更准确衡量框的重合面积。实验结果表明,YOLOv8-DSG算法在NEU-DET数据集上平均精度mAP达到80%,相较于原YOLOv8算法,提高了3.3%,且误检、漏检率低,具有更高的检测精度和运算效率,可在质量检测方面发挥重要作用。展开更多
针对在复杂背景下输电线路多尺度缺陷目标检测精度较低的问题,文中提出一种基于改进YOLOv7(You Only Look Once version 7)的输电线路多类缺陷目标检测模型。对于复杂背景造成缺陷目标较低的问题,在Backbone部分引入改进的Swin Transfor...针对在复杂背景下输电线路多尺度缺陷目标检测精度较低的问题,文中提出一种基于改进YOLOv7(You Only Look Once version 7)的输电线路多类缺陷目标检测模型。对于复杂背景造成缺陷目标较低的问题,在Backbone部分引入改进的Swin Transformer模块,通过使用多头注意力机制提升对全局特征的提取效果来提高模型的检测精度。对于待检测目标的多尺度特性,在特征金字塔基础上引入自适应特征融合模块,提升了Neck部分特征融合网络对多类不同尺度缺陷目标的检测能力。使用SIoU(Structured Intersection over Union)损失函数在提高预测框回归精度的同时加快了模型的收敛。实验结果表明,相较于YOLOv5、YOLOv7和Faster R-CNN(Faster Region with Convolutional Neural Network)模型,改进YOLOv7模型具有较高的检测精度,其平均检测精度可达96.4%,检测速度为29.6 frame·s^(-1),能够为输电线路多类缺陷目标检测提供参考。展开更多
钢丝绳金属横截面积损失(Loss of Metallic area)直接影响钢丝绳承载强度等特性,因此其检测及定量分析对于设备安全可靠运行具有重要意义。针对目前主磁通检测中存在的线圈绕制困难、参数确定模糊等问题,基于仿真模型提出一种基于印制...钢丝绳金属横截面积损失(Loss of Metallic area)直接影响钢丝绳承载强度等特性,因此其检测及定量分析对于设备安全可靠运行具有重要意义。针对目前主磁通检测中存在的线圈绕制困难、参数确定模糊等问题,基于仿真模型提出一种基于印制电路板(Printed Circuit Board)的分体式线圈结构,分析了线圈匝数、线圈层数、线距等参数对检测信号的影响;建立主磁通检测模型,探究损伤宽度对主磁通检测信号的影响规律,并针对损伤宽度变化造成的信号损失设计补偿方法;最后通过钢丝实验验证金属横截面积定量检测效果,表明该方法定量误差在1%以内,能够有效检测钢丝绳的LMA。展开更多
文摘针对传统图像处理算法对钢铁表面缺陷检测存在识别效率低、漏检误检率高等问题,提出了YOLOv8-DSG(Deformable Convolution Network Squeeze and Excitation Network Generalized Intersection over Union)钢铁表面缺陷检测算法。在传统YOLOv8算法的基础上,首先在Backbone网络的C2f(Convolution to Feature)模块中嵌入了可变形卷积网络DCN(Deformable Convolution Network),增强了模型在复杂背景条件下的特征提取能力;其次,在Neck网络中引入了SE(Squeeze and Excitation Network)注意力模块,突出钢铁表面重要特征信息,提升了特征融合的丰富性;最后,利用GIOU(Generalized Intersection Over Union)损失函数代替原有的CIOU(Complete Intersection Over Union),相比CIOU,GIOU引入了最小包围框面积比率,可更准确衡量框的重合面积。实验结果表明,YOLOv8-DSG算法在NEU-DET数据集上平均精度mAP达到80%,相较于原YOLOv8算法,提高了3.3%,且误检、漏检率低,具有更高的检测精度和运算效率,可在质量检测方面发挥重要作用。
文摘针对在复杂背景下输电线路多尺度缺陷目标检测精度较低的问题,文中提出一种基于改进YOLOv7(You Only Look Once version 7)的输电线路多类缺陷目标检测模型。对于复杂背景造成缺陷目标较低的问题,在Backbone部分引入改进的Swin Transformer模块,通过使用多头注意力机制提升对全局特征的提取效果来提高模型的检测精度。对于待检测目标的多尺度特性,在特征金字塔基础上引入自适应特征融合模块,提升了Neck部分特征融合网络对多类不同尺度缺陷目标的检测能力。使用SIoU(Structured Intersection over Union)损失函数在提高预测框回归精度的同时加快了模型的收敛。实验结果表明,相较于YOLOv5、YOLOv7和Faster R-CNN(Faster Region with Convolutional Neural Network)模型,改进YOLOv7模型具有较高的检测精度,其平均检测精度可达96.4%,检测速度为29.6 frame·s^(-1),能够为输电线路多类缺陷目标检测提供参考。