期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进YOLOv8n的电磁离合器端面缺陷检测 被引量:1
1
作者 魏书豪 徐红伟 +2 位作者 柯海森 李孝禄 丁建雄 《现代制造工程》 北大核心 2025年第5期126-134,共9页
电磁离合器是汽车生产过程中的重要部件,针对其端面缺陷尺寸微小、背景纹理复杂以及现有算法无法实现缺陷多样性检测等问题,提出了基于改进YOLOv8n的轻量级目标检测算法。在主干网络中融合EMA注意力和部分卷积,设计了轻量级的C2F-PE模... 电磁离合器是汽车生产过程中的重要部件,针对其端面缺陷尺寸微小、背景纹理复杂以及现有算法无法实现缺陷多样性检测等问题,提出了基于改进YOLOv8n的轻量级目标检测算法。在主干网络中融合EMA注意力和部分卷积,设计了轻量级的C2F-PE模块以改进C2F结构,增强网络的特征提取能力;为促进相同尺度间更丰富的特征融合,引入自注意力内尺度特征交互(AIFI)模块替换SPPF层,以捕获更细粒度的信息;在颈部网络中添加小目标检测层,有效地融合了浅层特征信息,提升了模型对小目标的感知力;引入Slim-neck模块改进颈部网络,轻量化模型的同时保持网络的检测精度。实验结果表明,改进后的算法相较于YOLOv8n算法,mAP@0.5达到94.6%,提升了4.5%,参数量减少13.3%,检测速度达到81 f/s。该算法更好地平衡了检测精度和速度,满足电磁离合器生产中实时检测的需求。 展开更多
关键词 YOLOv8n 电磁离合器 缺陷检测 轻量级网络 EMA注意力 内尺度特征交互 Slim-neck模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部