期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
基于密度聚类的工业数据去噪声预处理研究
1
作者 曹永成 王强 刘兴鹏 《佳木斯大学学报(自然科学版)》 CAS 2011年第3期417-418,共2页
针对工业数据去除噪声预处理问题,提出了基于密度聚类的数据筛选方法.该方法通过计算各样本数据间的空间距离而获得数据空间的分布密度情况,根据密度聚类法按密度分布聚类,聚类的中心点即为筛选获得的研究数据.实验表明,基于密度聚类的... 针对工业数据去除噪声预处理问题,提出了基于密度聚类的数据筛选方法.该方法通过计算各样本数据间的空间距离而获得数据空间的分布密度情况,根据密度聚类法按密度分布聚类,聚类的中心点即为筛选获得的研究数据.实验表明,基于密度聚类的数据筛选法选取数据可以克服环境噪声干扰,筛选数据准确可靠,适用于工业数据的预处理. 展开更多
关键词 数据预处理 密度 噪声
在线阅读 下载PDF
基于DBSCAN聚类算法的卫星数据分区异常检测 被引量:2
2
作者 尚星宇 《科技创新与应用》 2024年第10期138-142,共5页
随着我国第一颗电磁监测卫星的发射,卫星探测的海量数据不断涌现,探究空间载荷数据变化特征已成为当前研究热点。为了对张衡一号卫星LAP载荷数据进行异常检测,该文将处理后的数据按地理纬度划分为南纬50°到南纬20°,南纬20... 随着我国第一颗电磁监测卫星的发射,卫星探测的海量数据不断涌现,探究空间载荷数据变化特征已成为当前研究热点。为了对张衡一号卫星LAP载荷数据进行异常检测,该文将处理后的数据按地理纬度划分为南纬50°到南纬20°,南纬20°到北纬20°,北纬20°到北纬50°三个区域,依次采用DBSCAN密度聚类算法进行聚类异常检测。结果表明,该方法可用于对LAP数据的异常检测。DBSCAN密度聚类算法可用于检测卫星异常数据,为检测卫星探测数据异常、研究空间数据变化特征提供思路参考。 展开更多
关键词 ZH-1卫星 原位电子密度观测数据 异常检测 dbscan 算法
在线阅读 下载PDF
一种面对雷达信号分选的无参数快速聚类算法
3
作者 彭泽宇 束坤 《舰船电子对抗》 2025年第2期52-57,共6页
针对基于密度的噪声应用空间聚类(DBSCAN)算法在雷达信号预分选中需要人为设置聚类参数、对密度分布不均雷达信号聚类准确度低、计算复杂度高的问题,提出了一种基于粒子群算法和网格划分的无参数快速聚类(GPSO-DBSCAN)算法。该算法通过... 针对基于密度的噪声应用空间聚类(DBSCAN)算法在雷达信号预分选中需要人为设置聚类参数、对密度分布不均雷达信号聚类准确度低、计算复杂度高的问题,提出了一种基于粒子群算法和网格划分的无参数快速聚类(GPSO-DBSCAN)算法。该算法通过粒子群算法自适应获得DBSCAN聚类最优参数,通过网格划分和分级聚类增强了对密度分布不均雷达信号的聚类能力,并降低了计算复杂度,实现了准确、快速聚类。仿真结果表明,该算法能够自适应、准确快速完成密度分布不均雷达信号的聚类。 展开更多
关键词 雷达信号分选 基于密度噪声应用空间算法 无参数 粒子群算法 网格单元
在线阅读 下载PDF
一种改进的基于密度的聚类算法 被引量:20
4
作者 许虎寅 王治和 《微电子学与计算机》 CSCD 北大核心 2012年第2期44-47,53,共5页
聚类是数据挖掘领域中的一个重要研究方向,在基于密度的聚类算法DBSCAN的基础上,提出了一种改进的基于密度的聚类算法,该算法在核心点的邻域扩展中不再将邻域内的点作为种子点,而是按顺序选择一个邻域外未被标记的点作为种子点,然后分... 聚类是数据挖掘领域中的一个重要研究方向,在基于密度的聚类算法DBSCAN的基础上,提出了一种改进的基于密度的聚类算法,该算法在核心点的邻域扩展中不再将邻域内的点作为种子点,而是按顺序选择一个邻域外未被标记的点作为种子点,然后分不同情况进行相应的聚类扩展,此算法可以有效减少聚类中核心点邻域重叠区域查询的次数和运行的时间,实验测试结果也表明该算法聚类的效率和质量明显优于DBSCAN算法. 展开更多
关键词 dbscan 密度 核心点 邻域
在线阅读 下载PDF
基于密度与动态阈值的任意形状聚类挖掘算法研究 被引量:1
5
作者 陈沛帅 琚春华 《电信科学》 北大核心 2012年第1期75-81,共7页
本文分析了数据聚类算法BIRCH的不足之处,提出了一种基于密度与动态阈值的任意形状聚类挖掘算法——DVTD算法,它结合密度和阈值双重参数,并根据数据集内在特征,动态改变阈值T,既可以控制CF树的大小,也能利用不同球形聚类逼近任意形状的... 本文分析了数据聚类算法BIRCH的不足之处,提出了一种基于密度与动态阈值的任意形状聚类挖掘算法——DVTD算法,它结合密度和阈值双重参数,并根据数据集内在特征,动态改变阈值T,既可以控制CF树的大小,也能利用不同球形聚类逼近任意形状的数据聚类。实验结果表明,它的算法复杂度与BIRCH相当,并大大降低了CF的大小,对任意形状的聚类效果可以达到与DBSCAN相近的效果。 展开更多
关键词 算法 BIRCH dbscan 动态阈值 密度
在线阅读 下载PDF
改进的密度峰值聚类算法的差分隐私保护方案 被引量:1
6
作者 葛丽娜 陈园园 +1 位作者 王捷 王哲 《郑州大学学报(工学版)》 CAS 北大核心 2023年第6期19-24,共6页
针对改进的密度峰值聚类(AdDPC)算法在计算局部密度时产生的隐私泄露问题以及算法的一次分配策略,提出一种改进的密度峰值聚类算法的差分隐私保护方案。该方案在算法计算局部密度的过程中添加Laplace随机噪声,使得即使攻击者拥有最大背... 针对改进的密度峰值聚类(AdDPC)算法在计算局部密度时产生的隐私泄露问题以及算法的一次分配策略,提出一种改进的密度峰值聚类算法的差分隐私保护方案。该方案在算法计算局部密度的过程中添加Laplace随机噪声,使得即使攻击者拥有最大背景知识,也无法通过添加或者删除数据集中的某一点来获取相应的信息,从而利用差分攻击获取目标数据点的信息,达到保护隐私数据的目的,并且在分配非聚类中心点时引入可达定义改进AdDPC算法的分配策略,避免因为一次分配策略导致数据点分配错误的问题。实验对比了DP-rcCFSFDP算法、AdAPC-rDP算法、IDP K-means算法的F-Measure和ARI,结果表明:当隐私预算大于1.5时,所提算法的F-Measure和ARI优于其他算法,所提算法能够在保护敏感数据的同时保证数据的可用性。 展开更多
关键词 密度峰值 差分隐私 随机噪声 算法
在线阅读 下载PDF
一种发现多层次密度的聚类算法
7
作者 孙焕良 毕占举 +2 位作者 刘俊岭 周祥国 许景科 《沈阳建筑大学学报(自然科学版)》 CAS 2006年第2期329-333,共5页
目的提出一种可以发现不同密度层次分布的聚类算法,解决多层次不同密度数据集的聚类问题.方法采用对数据对象的k-邻居距离进行排序,利用线性回归分析方法发现密度区域变化的边界,对同一个密度区域中的点利用DBSCAN算法进行聚类,获得了... 目的提出一种可以发现不同密度层次分布的聚类算法,解决多层次不同密度数据集的聚类问题.方法采用对数据对象的k-邻居距离进行排序,利用线性回归分析方法发现密度区域变化的边界,对同一个密度区域中的点利用DBSCAN算法进行聚类,获得了多密度级别的类.结果使用真实数据集与人工数据集测试结果表明,此算法可以发现现有算法所不能发现的模式.结论算法在时间效率上与DB-SCAN相同,空间效率上随着输入数据的数目增加而线性增长,同时此算法可适用于高维数据集. 展开更多
关键词 数据挖掘 基于密度的算法 dbscan
在线阅读 下载PDF
基于AP密度聚类方法的雷达辐射源信号识别 被引量:2
8
作者 王美玲 张复春 杨承志 《舰船电子对抗》 2012年第3期1-5,共5页
未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进行... 未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进行初步聚类,再设定相关参数,运用基于密度的带有噪声的空间聚类(DBSCAN)算法进行二次聚类。相对于原样本,初始聚类结果分布具有一定的代表性,容易找到适合DBSCAN方法的参数值。测试表明该方法具有较高的识别率。 展开更多
关键词 辐射源识别 亲和传递 基于密度的带有噪声的空间
在线阅读 下载PDF
基于AP-DBSCAN聚类的弹道目标进动特征提取
9
作者 陈蓉 冯存前 +1 位作者 王义哲 许丹 《弹箭与制导学报》 CSCD 北大核心 2017年第3期109-113,共5页
进动是弹道目标识别的重要特征。以锥体弹头为研究对象,文中提出了一种基于宽带雷达组网的锥体目标进动特征提取方法。首先建立弹道目标进动模型,利用AP聚类算法,根据回波信号的强度进行初步聚类,然后通过DBSCAN算法,剔除噪声点,将非噪... 进动是弹道目标识别的重要特征。以锥体弹头为研究对象,文中提出了一种基于宽带雷达组网的锥体目标进动特征提取方法。首先建立弹道目标进动模型,利用AP聚类算法,根据回波信号的强度进行初步聚类,然后通过DBSCAN算法,剔除噪声点,将非噪声信号分类并求平均值。在此基础上,分别估计出不同雷达体制下各散射中心的幅、相信息,进而解算出弹道目标的进动参数。仿真结果表明,在信噪比较小的情况下,目标的进动参数估计精度仍较高。 展开更多
关键词 宽带雷达 AP dbscan密度 进动特征提取
在线阅读 下载PDF
基于DBSCAN-RF洪水分类的洪水预报应用研究 被引量:1
10
作者 甘甜 郑英 +3 位作者 蒋云钟 赵红莉 贺君彦 段浩 《水利水电技术(中英文)》 北大核心 2024年第3期77-89,共13页
【目的】洪水分类预报能有效提高洪水预报准确性,为防灾减灾工作提供科学依据。【方法】针对分类因子和分类算法优选问题,以海河流域徒骇河宫家闸上游为例进行研究,(1)充分考虑产汇流影响因素与洪水特征,选取洪峰流量、洪水总量、时段... 【目的】洪水分类预报能有效提高洪水预报准确性,为防灾减灾工作提供科学依据。【方法】针对分类因子和分类算法优选问题,以海河流域徒骇河宫家闸上游为例进行研究,(1)充分考虑产汇流影响因素与洪水特征,选取洪峰流量、洪水总量、时段洪量、洪水历时、起历时、落历时、峰度、偏度、涨水仰角、落水仰角、C_(s)、C_(v)、前3 d面雨量、前10 d面雨量、累计面雨量及最大面雨量等16维分类因子,使用主成分投影法(Principal Component Analysis,PCA)对分类因子降维提高计算效率;(2)基于密度聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)-随机森林(Random Forest,RF)算法进行洪水分类,减少对分类先验知识的依赖,提高了分类精度;(3)在徒骇河流域进行了方法应用,选择适用于半干旱半湿润地区的超渗-蓄满同时作用的产流模型及单位线汇流模型进行洪水分类预报研究,分别针对各类洪水进行模型率定。【结果】结果表明:轮廓系数为0.7015,表明DBSCAN算法聚类效果理想,基于RF算法的洪水分类准确率为91.67%,分类效果理想;经洪水分类预报,NSE系数均高于0.8,分类预报结果优于直接预报。【结论】结果说明:基于DBSCAN-RF洪水分类的洪水预报能较好地反映研究区域洪水演进过程,为研究区域洪水预报及防灾减灾工作提供依据。 展开更多
关键词 历史洪水 洪水分 洪水预报 密度(dbscan) 随机森林(RF)
在线阅读 下载PDF
基于AP密度聚类方法的雷达辐射源信号识别
11
作者 郁平 高岚岚 +1 位作者 任浩 贾英杰 《矿业工程》 CAS 2012年第4期1-2,共2页
未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进... 未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进行初步聚类,再设定相关参数,运用基于密度的带有噪声的空间聚类(DBSCAN)算法进行二次聚类。相对于原样本,初始聚类结果分布具有一定的代表性,容易找到适合DBSCAN方法的参数值。测试表明该方法具有较高的识别率。 展开更多
关键词 辐射源识别 亲和传递 基于密度的带有噪声的空间
在线阅读 下载PDF
基于网络化密度聚类的船舶停泊点数据挖掘 被引量:1
12
作者 叶仁道 黄靓莹 《水运管理》 2017年第8期20-23,共4页
为获取船舶停泊行为规律,以大连港、天津港、青岛港、德国罗斯托克港、巴西桑托斯港和荷兰格罗宁根港等全球六大港口水域为例,基于Hive数据仓库和R语言平台,利用网格化DBSCAN算法,提取船舶在各港口水域停泊点位置、面积等信息,进而基于... 为获取船舶停泊行为规律,以大连港、天津港、青岛港、德国罗斯托克港、巴西桑托斯港和荷兰格罗宁根港等全球六大港口水域为例,基于Hive数据仓库和R语言平台,利用网格化DBSCAN算法,提取船舶在各港口水域停泊点位置、面积等信息,进而基于停泊点可视化结果,验证这六大港口实时可视化结果与基于历史数据挖掘结果相符。研究成果有助于保障港口水域船舶安全通航,亦为船舶交通管理系统智能化奠定基础,从而推动港口行业持续、健康发展。 展开更多
关键词 船舶自动识别系统(AIS) 数据挖掘技术 Hive数据仓库 网格化 空间密度(dbscan)
在线阅读 下载PDF
一种基于相对密度的快速聚类算法 被引量:6
13
作者 孙凌燕 杨明 任建斌 《微电子学与计算机》 CSCD 北大核心 2009年第12期109-111,116,共4页
基于相对密度的聚类算法和快速DBSCAN聚类算法是典型密度聚类算法DBSCAN的两种改进算法,但这两种方法仍存在不足.文中提出一种基于相对密度的快速聚类算法,实验证明了该方法的有效性.
关键词 密度 dbscan 相对密度
在线阅读 下载PDF
基于DBSCAN选择性聚类集成的岩体结构面优势产状分组方法 被引量:8
14
作者 张化进 吴顺川 韩龙强 《岩土力学》 EI CAS CSCD 北大核心 2022年第6期1585-1595,共11页
针对单个结构面聚类模型存在误判或漏选风险、难以有效识别噪点与孤值等问题,提出利用具有噪声的基于密度的聚类(DBSCAN)算法进行选择性聚类集成的岩体结构面优势产状分组方法。首先,将结构面产状进行空间坐标转换,以单位法向量的夹角... 针对单个结构面聚类模型存在误判或漏选风险、难以有效识别噪点与孤值等问题,提出利用具有噪声的基于密度的聚类(DBSCAN)算法进行选择性聚类集成的岩体结构面优势产状分组方法。首先,将结构面产状进行空间坐标转换,以单位法向量的夹角正弦值作为相似性度量标准。进而,基于DBSCAN算法构建一定数量具有差异性的基聚类器,借助选择性聚类集成技术挑选出部分优异的基聚类器。最后采用一致性集成技术融合这些基聚类器,获得一个高可靠度的选择性聚类集成结果。将该方法应用于DIPS软件数据集与松塔水电站坝址区结构面勘察中,检验了该方法的可行性与有效性。研究结果表明:该方法聚类效果显著优于常见聚类算法,聚类结果客观合理,不仅能有效标识出噪点与孤值,还克服了单个模型易过分割或欠分割的不足。该研究成果对准确确定结构面优势组具有一定的工程价值。 展开更多
关键词 岩体结构面 优势产状 集成 具有噪声的基于密度的(dbscan) 轮廓系数
在线阅读 下载PDF
一种基于目标点云分布特性的动态聚类算法
15
作者 李彩虹 何晨阳 +1 位作者 高锋 陈佳欣 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第2期261-267,共7页
激光雷达在自动驾驶系统的目标检测任务中发挥着重要作用,但其扫描机理会使得点云分布不均匀,常规聚类算法由于参数固定会导致较多的错误聚类。为解决该问题,该文以椭圆形状作为邻域空间,设计基于采样点位置的邻域自适应调整策略,提出... 激光雷达在自动驾驶系统的目标检测任务中发挥着重要作用,但其扫描机理会使得点云分布不均匀,常规聚类算法由于参数固定会导致较多的错误聚类。为解决该问题,该文以椭圆形状作为邻域空间,设计基于采样点位置的邻域自适应调整策略,提出一种基于目标点云分布特性的动态聚类算法。通过正确聚类、过聚类等综合结果评估算法的性能,在KITTI数据集上进行了数值分析得到算法参数,并在校园环境中进行了实车对比实验。结果表明:所提算法能减少基于密度的噪声应用空间聚类(DBSCAN)中固定邻域所造成的70.60%过聚类、49.76%欠聚类等错误结果,从而有效提高算法的综合聚类性能。 展开更多
关键词 智能汽车 目标检测 激光雷达 点云 KITTI数据集 基于密度噪声应用空间(dbscan)
在线阅读 下载PDF
基于区域中心点的多层次数据集密度聚类算法 被引量:1
16
作者 魏姁妲 逄焕利 《长春工业大学学报》 CAS 2016年第6期576-580,共5页
通过k-dist图和DK分析方法对非均匀数据进行密度分区并选择半径,确定各密度区域的初始区域中心点,然后调用改进后的快速聚类算法进行聚类。在两种数据集上进行了算法实验验证,有效地聚类多层次数据集,提高了效率和准确率。
关键词 非均匀密度 dbscan 区域中心点 K邻域 DK分析
在线阅读 下载PDF
基于密度聚类的改进PRI分选方法 被引量:1
17
作者 王磊 曾维贵 《兵工自动化》 2018年第2期58-61,共4页
在雷达被动信号分选中,对脉冲重复间隔(pulse repetition interval,PRI)值的提取至关重要。针对直方图统计和PRI变换法在脉冲重复周期值提取精度方面的不足,提出一种基于密度聚类的PRI值提取方法。通过对脉冲到达时间做三级差值,对其进... 在雷达被动信号分选中,对脉冲重复间隔(pulse repetition interval,PRI)值的提取至关重要。针对直方图统计和PRI变换法在脉冲重复周期值提取精度方面的不足,提出一种基于密度聚类的PRI值提取方法。通过对脉冲到达时间做三级差值,对其进行基于密度的聚类处理,选取类内均值作为PRI估计值。仿真实验结果表明:该方法提取出的PRI值在精确度方面明显高于传统方法,对于存在误差抖动和杂散脉冲的雷达信号有较好的分选效果,提高了复杂环境下被动雷达的脉冲信号分选能力。 展开更多
关键词 密度 dbscan PRI分选 序列搜索
在线阅读 下载PDF
基于密度聚类的低压台区归属关系及相位识别方法 被引量:1
18
作者 闫东辉 《南方能源建设》 2023年第5期149-156,共8页
[目的]供电部门记录的正确的拓扑信息有助于工作人员监测电网信息,分析故障,优化电网运行以满足低压配电台区精益化、智能化管理的需要。目前,各式新型用电设备及用户的加入使低压配电网络结构呈现出持续变化的特征,线路维护成本被大大... [目的]供电部门记录的正确的拓扑信息有助于工作人员监测电网信息,分析故障,优化电网运行以满足低压配电台区精益化、智能化管理的需要。目前,各式新型用电设备及用户的加入使低压配电网络结构呈现出持续变化的特征,线路维护成本被大大提高。[方法]为此,提出基于密度聚类的低压台区归属关系识别方法。首先,提取智能电表有效电压数据生成高维时序电压矩阵;其次,采用t分布随机近邻嵌入方法(t-distributed Stochastic Neighbor Embedding,t-SNE)对高维时序电压数据进行特征提取与降维;然后,应用基于数据密度的噪声应用空间聚类方法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对降维后的数据进行聚类分析,实现低压用户台区归属信息的识别;最后,对海南省三亚市某台区实际数据进行分析,并将所提方法与其他主流的拓扑识别算法进行对比。[结果]分析结果表明所提方法能够达到95%以上的台区识别准确率,高于目前其他主流的拓扑信息识别方法。[结论]文章中的方法在解决此类问题上具有有效性与优势性,可以为实际工程应用提供参考,为低压台区拓扑信息识别领域提供不一样的研究思路。 展开更多
关键词 低压台区 电压数据信息 t分布随机近邻嵌入方法 基于数据密度的噪声应用空间方法 台区归属关系识别 相位识别
在线阅读 下载PDF
基于DBTCAN算法的船舶轨迹聚类与航路识别 被引量:6
19
作者 杨家轩 刘元 《上海海事大学学报》 北大核心 2022年第3期7-12,共6页
为解决船舶轨迹聚类算法效率不高,检测精度低,丢失轨迹局部特征等问题,将具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法由传统的点聚类推广为线聚类,提出一种可以直接对完整... 为解决船舶轨迹聚类算法效率不高,检测精度低,丢失轨迹局部特征等问题,将具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法由传统的点聚类推广为线聚类,提出一种可以直接对完整船舶轨迹进行聚类的具有噪声的基于密度的轨迹聚类(density-based trajectory clustering of applications with noise,DBTCAN)算法。该算法采用Hausdorff距离作为船舶轨迹之间的相似度度量,可以对不同长度的船舶轨迹进行聚类。针对DBTCAN算法需要人工确定输入参数的问题,提出一种参数自适应确定方法。选取渤海海域的船舶自动识别系统(automatic identification system,AIS)数据进行实验,结果表明,该算法能够在大量复杂的船舶轨迹中找到相似的轨迹并对其进行聚类,聚类结果与实际交通流情况一致。本文的研究成果可以为相关部门进行航线规划和海上交通监管提供依据。 展开更多
关键词 船舶轨迹 具有噪声的基于密度的轨迹(DBTCAN) HAUSDORFF距离 自适应参数 航路识别
在线阅读 下载PDF
S-DBSCAN:一种基于DBSCAN发现高密度簇的算法 被引量:5
20
作者 孙鹏 韩承德 曾涛 《高技术通讯》 CAS CSCD 北大核心 2012年第6期589-595,共7页
针对基于密度的带有噪声的空间聚类(DBSCAN)算法用于交互式数据挖掘时用户经常调整算法参数以发现感兴趣的知识以及数据集相对稳定的特点,提出了一种基于DBSCAN发现高密度簇的算法—S-DBSCAN算法,确定了需调整的算法参数——对象的... 针对基于密度的带有噪声的空间聚类(DBSCAN)算法用于交互式数据挖掘时用户经常调整算法参数以发现感兴趣的知识以及数据集相对稳定的特点,提出了一种基于DBSCAN发现高密度簇的算法—S-DBSCAN算法,确定了需调整的算法参数——对象的邻域范围8(Eps)和满足核心对象条件的£邻域内最小对象个数MinPts,阐述了参数8与MinPts的3种适合S-DBSCAN算法的变化情况,并给出了相应的证明,同时分析了算法的时间复杂度。在对真实和合成数据集的测试中,S-DBSCAN算法相比DBSCAN算法具有较好的效率。 展开更多
关键词 基于密度的带有噪声的空间(dbscan) S-dbscan 密度 数可变
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部