期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于关联模糊神经网络和改进型蜂群算法的负荷预测方法 被引量:16
1
作者 赵芝璞 高超 +1 位作者 沈艳霞 陈杰 《中国电力》 CSCD 北大核心 2018年第2期54-60,共7页
为提高负荷预测精度,考虑历史负荷数据之间相关联的特性,利用关联模糊神经网络建立了负荷预测模型。与其他负荷预测方法相比,基于关联模糊神经网络和改进型蜂群算法的负荷预测方法,减少了模型所需要的模糊规则的数量,降低了模型的复杂... 为提高负荷预测精度,考虑历史负荷数据之间相关联的特性,利用关联模糊神经网络建立了负荷预测模型。与其他负荷预测方法相比,基于关联模糊神经网络和改进型蜂群算法的负荷预测方法,减少了模型所需要的模糊规则的数量,降低了模型的复杂度。将该方法应用于某地实际负荷预测,数值结果表明,该方法具有较高的预测精度。 展开更多
关键词 电力系统 负荷预测 关联模糊神经网络 改进型蜂群算法 负荷历史数据
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部