期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于FCM和CNN-BiLSTM-MHA的矿用带式输送机健康状态评估
1
作者 孙琪雅 袁逸萍 +1 位作者 张润泽 陈彩凤 《机床与液压》 北大核心 2025年第7期201-206,共6页
受频繁启停机、负载突变等影响,带式输送机监测数据存在大量噪声、异常值和空值等,从而无法准确表征其运行状态。提出一种基于FCM聚类算法和CNN-BiLSTM-MHA模型的健康状态评估方法。对采集到的多传感器数据,利用动态时间规整进行预处理... 受频繁启停机、负载突变等影响,带式输送机监测数据存在大量噪声、异常值和空值等,从而无法准确表征其运行状态。提出一种基于FCM聚类算法和CNN-BiLSTM-MHA模型的健康状态评估方法。对采集到的多传感器数据,利用动态时间规整进行预处理,采取自适应特征融合方法将降维后的健康指标进行融合;利用FCM聚类分析设备全生命周期退化数据,划分其健康状态;将划分好健康状态的数据输入CNN-BiLSTM-MHA模型进行训练,得到最终的健康状态评估结果。实验结果表明:与CNN和CNN-BiLSTM模型相比,CNN-BiLSTM-MHA模型在准确率、精确率、召回率和F1分数这4个评价指标上表现更优。 展开更多
关键词 关矿用带式输送机 健康状态评估 多传感器融合 模糊C均值聚类 CNN-BiLSTM-MHA
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部