期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ISSA-Stacking集成学习的共享单车租赁量预测
1
作者 张泽 韩晓明 韩晓霞 《控制工程》 北大核心 2025年第1期39-50,共12页
针对共享单车供需不平衡问题,结合Stacking算法和改进麻雀搜索算法(improved sparrow search algorithm,ISSA),提出了一种基于ISSA-Stacking算法的共享单车租赁量预测模型。首先,利用相关性分析法和轻量级梯度提升机进行特征选择;然后,... 针对共享单车供需不平衡问题,结合Stacking算法和改进麻雀搜索算法(improved sparrow search algorithm,ISSA),提出了一种基于ISSA-Stacking算法的共享单车租赁量预测模型。首先,利用相关性分析法和轻量级梯度提升机进行特征选择;然后,建立多种异质回归预测模型并采用ISSA对各模型的关键超参数进行优化,通过引入精英反向学习策略和自适应种群比例因子来提高麻雀搜索算法的全局搜索能力和收敛速度;最后,利用Stacking算法的集成学习思想对各模型进行融合。实验使用美国华盛顿地区的共享单车出行数据进行租赁量预测,通过对比分析验证了所提融合模型相比单一模型在共享单车租赁量预测方面具有更高的预测精度。 展开更多
关键词 共享单车租赁量预测 集成学习 改进麻雀搜索算法 特征选择
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部