期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度知识蒸馏与增量学习的滚动轴承故障诊断方法
被引量:
5
1
作者
夏逸飞
皋军
+1 位作者
邵星
王翠香
《振动与冲击》
EI
CSCD
北大核心
2024年第12期276-285,共10页
为了缓解单任务轴承故障诊断方法在不同工况诊断时产生的灾难性遗忘问题,提出一种基于多尺度知识蒸馏与增量学习(multi-scale knowledge distillation and continual learning,CL-MSKD)的滚动轴承故障诊断方法。以一维卷积神经网络作为C...
为了缓解单任务轴承故障诊断方法在不同工况诊断时产生的灾难性遗忘问题,提出一种基于多尺度知识蒸馏与增量学习(multi-scale knowledge distillation and continual learning,CL-MSKD)的滚动轴承故障诊断方法。以一维卷积神经网络作为CL-MSKD主要框架,余弦归一化层作为多任务共享的分类器,通过标签与特征两个尺度的知识蒸馏实现模型知识的保存与传递。CL-MSKD能够以一个统一结构的网络模型对在不同工况下的轴承故障进行诊断,通过知识压缩方法不断地学习和保存知识,最终缓解增量阶段产生的灾难性遗忘问题,提升跨工况场景下轴承故障诊断性能。试验表明,CL-MSKD能够有效缓解灾难性遗忘并保持良好的诊断效果。在任务环境差异较大的情况下,准确率指标仍能达到97.09%,与其他增量方法相比稳定性更好,精度更高。
展开更多
关键词
增量学习
知识蒸馏
卷积神经网络
轴承故障诊断
共享分类器
在线阅读
下载PDF
职称材料
题名
基于多尺度知识蒸馏与增量学习的滚动轴承故障诊断方法
被引量:
5
1
作者
夏逸飞
皋军
邵星
王翠香
机构
盐城工学院信息工程学院
盐城工学院机械工程学院
出处
《振动与冲击》
EI
CSCD
北大核心
2024年第12期276-285,共10页
基金
国家自然科学基金(62076215)
教育部新一代信息技术创新项目(2020ITA02057)
盐城工学院研究生科研与实践创新计划项目(SJCX23_XZ032)。
文摘
为了缓解单任务轴承故障诊断方法在不同工况诊断时产生的灾难性遗忘问题,提出一种基于多尺度知识蒸馏与增量学习(multi-scale knowledge distillation and continual learning,CL-MSKD)的滚动轴承故障诊断方法。以一维卷积神经网络作为CL-MSKD主要框架,余弦归一化层作为多任务共享的分类器,通过标签与特征两个尺度的知识蒸馏实现模型知识的保存与传递。CL-MSKD能够以一个统一结构的网络模型对在不同工况下的轴承故障进行诊断,通过知识压缩方法不断地学习和保存知识,最终缓解增量阶段产生的灾难性遗忘问题,提升跨工况场景下轴承故障诊断性能。试验表明,CL-MSKD能够有效缓解灾难性遗忘并保持良好的诊断效果。在任务环境差异较大的情况下,准确率指标仍能达到97.09%,与其他增量方法相比稳定性更好,精度更高。
关键词
增量学习
知识蒸馏
卷积神经网络
轴承故障诊断
共享分类器
Keywords
continual learning
knowledge distillation
convolutional neural network
bearing fault diagnosis
shared classifier
分类号
TH212 [机械工程—机械制造及自动化]
TH213.3 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度知识蒸馏与增量学习的滚动轴承故障诊断方法
夏逸飞
皋军
邵星
王翠香
《振动与冲击》
EI
CSCD
北大核心
2024
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部