期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
采用辅助学习的物体六自由度位姿估计 被引量:1
1
作者 陈敏佳 盖绍彦 +1 位作者 达飞鹏 俞健 《光学精密工程》 EI CAS CSCD 北大核心 2024年第6期901-914,共14页
为了在严重遮挡以及少纹理等具有挑战性的场景下,准确地估计物体在相机坐标系中的位置和姿态,同时进一步提高网络效率,简化网络结构,本文基于RGB-D数据提出了采用辅助学习的六自由度位姿估计方法。网络以目标物体图像块、对应深度图以及... 为了在严重遮挡以及少纹理等具有挑战性的场景下,准确地估计物体在相机坐标系中的位置和姿态,同时进一步提高网络效率,简化网络结构,本文基于RGB-D数据提出了采用辅助学习的六自由度位姿估计方法。网络以目标物体图像块、对应深度图以及CAD模型作为输入,首先,利用双分支点云配准网络,分别得到模型空间和相机空间下的预测点云;接着,对于辅助学习网络,将目标物体图像块和由深度图得到的Depth-XYZ输入多模态特征提取及融合模块,再进行由粗到细的位姿估计,并将估计结果作为先验用于优化损失计算。最后,在性能评估阶段,舍弃辅助学习分支,仅将双分支点云配准网络的输出利用点对特征匹配进行六自由度位姿估计。实验结果表明:所提方法在YCB-Video数据集上的AUC和ADD-S<2 cm结果分别为95.9%和99.0%;在LineMOD数据集上的平均ADD(-S)结果为99.4%;在LM-O数据集上的平均ADD(-S)结果为71.3%。与现有的其他六自由度位姿估计方法相比,采用辅助学习的方法在模型性能上具有优势,在位姿估计准确率上有较大提升。 展开更多
关键词 六自由度位姿估计 辅助学习 深度图像 三维点云
在线阅读 下载PDF
基于关键点特征融合的六自由度位姿估计方法 被引量:10
2
作者 王太勇 孙浩文 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2022年第5期543-551,共9页
针对单张RGB-D图像进行六自由度目标位姿估计难以充分利用颜色信息与深度信息的问题,提出了一种基于多种网络(金字塔池化网络和PointNet++网络结合特征融合网络)构成的深度学习网络框架.方法用于估计在高度杂乱场景下一组已知对象的六... 针对单张RGB-D图像进行六自由度目标位姿估计难以充分利用颜色信息与深度信息的问题,提出了一种基于多种网络(金字塔池化网络和PointNet++网络结合特征融合网络)构成的深度学习网络框架.方法用于估计在高度杂乱场景下一组已知对象的六自由度位姿.首先对RGB图像进行语义识别,将每一个已知类别的对象掩膜应用到深度图中,按照掩膜的边界框完成对彩色图与深度图进行语义分割;其次,在获取到的点云数据中采用FPS算法获取关键点,映射到彩色图像与深度图像中进行关键点特征提取,将RGB-D图像中的颜色信息与深度信息视为异构数据,考虑关键点需要充分融合局部信息与全局信息,分别采用了金子塔池化网络(pyramid scene parsing network,PSPNet)和PointNet++网络提取颜色信息与深度信息;采用一种新型的关键点特征融合方法,深度融合提取到颜色信息与几何信息的局部及全局特征,并嵌入到选定的特征点中;使用多层感知机(multilayer perceptron,MLP)输出每一个像素点的六自由度位姿和置信度,利用每一个像素点的置信度,让网络自主选择最优的估计结果;最后,利用一种端到端的迭代位姿求精网络,进一步提高六自由度位姿估计的准确度.网络在公开的数据集LineMOD和YCB-Video上进行测试,实验结果表明和现有同类型的六自由度位姿估计方法相比,本文所提出的模型预测的六自由度准确度优于现有的同类型方法,在采用相同的评价标准下,平均准确度分别达到了97.2%和95.1%,分别提升了2.9%和3.9%.网络同时满足实时性要求,完成每一帧图像的六自由度位姿预测仅需0.06 s. 展开更多
关键词 六自由度位姿估计 深度学习 特征融合 机器视觉
在线阅读 下载PDF
基于混合通道注意力的类别级物体六自由度位姿估计 被引量:1
3
作者 刘崇沛 孙炜 +3 位作者 刘剑 杨慧 张星 范诗萌 《电子测量与仪器学报》 CSCD 北大核心 2023年第7期72-80,共9页
针对有光照变化、距离变化、背景杂乱、遮挡等干扰的场景下物体六自由度位姿估计精度低的问题,提出了一种结合多尺度特征融合和注意力机制的混合通道注意力模块(mixed channel attention,MCA)。在MCA基础上进一步构建了类别级物体六自... 针对有光照变化、距离变化、背景杂乱、遮挡等干扰的场景下物体六自由度位姿估计精度低的问题,提出了一种结合多尺度特征融合和注意力机制的混合通道注意力模块(mixed channel attention,MCA)。在MCA基础上进一步构建了类别级物体六自由度位姿估计方法(MCA6D),其关键步骤包括物体的实例分割,特征提取与基于MCA的特征优化,基于先验形状的物体模型重建,及基于点云配准的位姿估计。本文方法在公共数据集CAMERA和REAL分别取得86.3%(5°2 cm)、73.4%(5°5 cm)和39.2%(5°2 cm)、43.3%(5°5 cm)的均值平均精度,领先于NOCS、SPD、SGPA等主流方法;同时实物实验表明本文方法在存在光照变化、距离变化、背景杂乱、遮挡等干扰的场景可准确估计物体六自由度位姿。 展开更多
关键词 物体六自由度位姿估计 类别级 注意力机制 通道注意力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部