针对自然场景下获取的叶片病斑图像,提出利用图像显著性检测与模糊C均值聚类方法相结合的叶片病斑区域提取方法。首先,利用SLIC(simple linear iterative clustering)方法结合马尔科夫吸收链进行图像显著性检测,获取显著图,实现符合视...针对自然场景下获取的叶片病斑图像,提出利用图像显著性检测与模糊C均值聚类方法相结合的叶片病斑区域提取方法。首先,利用SLIC(simple linear iterative clustering)方法结合马尔科夫吸收链进行图像显著性检测,获取显著图,实现符合视觉特征的显著区域检测;其次,利用模糊C均值聚类算法对显著图进行分割,进而获取二值化后的叶斑图像;最后,结合原始图像获取最终叶片病斑区域。试验结果表明,叶片病斑区域提取比较准确,满足病斑进一步处理和分析的要求。展开更多
为了实现在复杂非结构环境下对木薯叶4种主要病害的高精度检测,提出一种基于选择性注意力机制的木薯叶病害神经网络检测改进算法MAISNet(Multiattention IBN Squareplus neural network)。以V2-ResNet-101为基础网络,先使用多重注意力...为了实现在复杂非结构环境下对木薯叶4种主要病害的高精度检测,提出一种基于选择性注意力机制的木薯叶病害神经网络检测改进算法MAISNet(Multiattention IBN Squareplus neural network)。以V2-ResNet-101为基础网络,先使用多重注意力算法优化加权系数,调整特征通道的语义表达,在特征图中初步构建显著性特征;然后在残差单元之后采用实例批归一化方法来抑制特征表达中的协变量偏移,在特征图中构建出显著性语义特征,实现高质量语义特征表达;最后在残差分支中采用Squareplus激活函数替代ReLU激活函数,保持语义特征在负数域的数值分布,减少特征拟合过程中的截断误差。对比试验结果显示,经过上述改进后构建出的MAISNet-101神经网络,对4种常见木薯叶病害检测的平均准确率达到95.39%,明显优于目前主流算法EfficientNet-B5和RepVGG-B3g4等。网络提取特征的可视化分析结果表明,高质量木薯叶病害显著性语义特征,是提高木薯叶病害检测准确率的关键。所提出的MAISNet神经网络模型可以完成实际场景下木薯叶病害高精度检测。展开更多
文摘针对自然场景下获取的叶片病斑图像,提出利用图像显著性检测与模糊C均值聚类方法相结合的叶片病斑区域提取方法。首先,利用SLIC(simple linear iterative clustering)方法结合马尔科夫吸收链进行图像显著性检测,获取显著图,实现符合视觉特征的显著区域检测;其次,利用模糊C均值聚类算法对显著图进行分割,进而获取二值化后的叶斑图像;最后,结合原始图像获取最终叶片病斑区域。试验结果表明,叶片病斑区域提取比较准确,满足病斑进一步处理和分析的要求。
文摘为了实现在复杂非结构环境下对木薯叶4种主要病害的高精度检测,提出一种基于选择性注意力机制的木薯叶病害神经网络检测改进算法MAISNet(Multiattention IBN Squareplus neural network)。以V2-ResNet-101为基础网络,先使用多重注意力算法优化加权系数,调整特征通道的语义表达,在特征图中初步构建显著性特征;然后在残差单元之后采用实例批归一化方法来抑制特征表达中的协变量偏移,在特征图中构建出显著性语义特征,实现高质量语义特征表达;最后在残差分支中采用Squareplus激活函数替代ReLU激活函数,保持语义特征在负数域的数值分布,减少特征拟合过程中的截断误差。对比试验结果显示,经过上述改进后构建出的MAISNet-101神经网络,对4种常见木薯叶病害检测的平均准确率达到95.39%,明显优于目前主流算法EfficientNet-B5和RepVGG-B3g4等。网络提取特征的可视化分析结果表明,高质量木薯叶病害显著性语义特征,是提高木薯叶病害检测准确率的关键。所提出的MAISNet神经网络模型可以完成实际场景下木薯叶病害高精度检测。