期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器视觉的寒地水稻田间除草机器人精准作业系统研究
1
作者 吉毅 王娟 《北方水稻》 2025年第6期183-187,共5页
传统除草机器人作业系统对于杂草的辨识不够精准,导致杂草去除召回率、误检抑制率较低。为此设计基于机器视觉的寒地水稻田间除草机器人精准作业系统。设计由图像处理器、摄像头等构成的机器视觉模块,采集寒地水稻田间图像。在寒地水稻... 传统除草机器人作业系统对于杂草的辨识不够精准,导致杂草去除召回率、误检抑制率较低。为此设计基于机器视觉的寒地水稻田间除草机器人精准作业系统。设计由图像处理器、摄像头等构成的机器视觉模块,采集寒地水稻田间图像。在寒地水稻田间杂草识别模块中,通过YOLOv3卷积神经网络模型实现采集的寒地水稻田间图像中的杂草识别。采用全电动四轮驱动底盘作为除草机器人的移动装置,基于杂草识别预测框实现除草路径导航。为除草机器人配备灵活的机械臂,搭载激光发射器,基于杂草识别预测框实现除草作业。实例测试结果表明,设计系统能够在寒地水稻田间实现较为精准的除草机器人作业,完成大部分杂草的清除工作,其残留的杂草较少,邻株误伤情况也较少;设计系统的杂草去除召回率整体高于0.9,说明系统对寒地小目标杂草的漏检率低,适应性强;设计系统的误检抑制率整体高于0.85,说明系统对水稻与杂草的形态差异区分能力强,能够减少误除草现象。 展开更多
关键词 机器视觉 寒地水稻田间除草机器人 精准作业 YOLOv3卷积神经网络模型 全电动四轮驱动底盘
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部