To better understand the mechanism of the Mw6.3 L'Aquila (Central Italy) earthquake occurred in 2009, global positioning system (GPS) and interferometric synthetic aperture radar (InSAR) data were used to deriv...To better understand the mechanism of the Mw6.3 L'Aquila (Central Italy) earthquake occurred in 2009, global positioning system (GPS) and interferometric synthetic aperture radar (InSAR) data were used to derive the coseismic slip distribution of the earthquake fault. Firstly, based on the homogeneous elastic half-space model, the fault geometric parameters were solved by the genetic algorithm. The best fitting model shows that the fault is a 13.7 km×14.1 km rectangular fault, in 139.3° strike direction and 50.2° southwest-dipping. Secondly, fixing the optimal fault geometric parameters, the fault plane was extended and discretized into 16× 16 patches, each with a size of 1 kmx 1 krn, and the non-uniform slip distribution of the fault was inverted by the steepest descent method with an appropriate smoothing ratio based on the layered crustal structure model. The preferred solution shows that the fault is mainly a normal fault with slight right-lateral strike slip, the maximum slip of 1.01 m is located in the depth of 8.28 km, the average rake is -100.9°, and the total geodetic moment is about 3.34× 1018 N.m (Mw 6.28). The results are much closer than previous studies in comparison with the seismological estimation. These demonstrate that the coseismic fault slip distribution of the L'Aauila earthauake inverted by the crustal model considering layered characters is reliable.展开更多
Taxi drivers' cruising patterns are learnt with GPS trajectory data collected in Shenzhen, China. By employing Ripley's K function, the impacts of land use and pick-up experience on taxis' cruising behavio...Taxi drivers' cruising patterns are learnt with GPS trajectory data collected in Shenzhen, China. By employing Ripley's K function, the impacts of land use and pick-up experience on taxis' cruising behavior are investigated concerning about both intensity of influence and radius of influence. The results indicate that, in general, taxi drivers tend to learn more from land use characteristics than from pick-up experience. The optimal radius of influence of land use points and previous pick-up points is 14.18 km and 9.93 km, respectively. The findings also show that the high-earning drivers or thorough drivers pay more attention to land use characteristics and tend to cruise in high-density area, while the low-earning drivers or focus drivers prefer to learn more from previous pick-up experience and select the area which is far away from the high-density area. These findings facilitate the development of measures of managing taxi's travel behavior by providing useful insights into taxis' cruising patterns. The results also provide useful advice for taxi drivers to make efficient cruising decision, which will contribute to the improvement of cruising efficiency and the reduction of negative effects.展开更多
基金Projects(40974006,40774003) supported by the National Natural Science Foundation of ChinaProject(NCET-08-0570) supported by the Program for New Century Excellent Talents in Chinese Universities+2 种基金Projects(2011JQ001,2009QZZD004) supported by the Fundamental Research Funds for the Central Universities in ChinaProjects(09K005,09K006) supported by the Key Laboratory for Precise Engineering Surveying & Hazard Monitoring of Hunan Province,ChinaProject(1343-74334000023) supported by the Graduate DegreeThesis Innovation Foundation of Central South University,China
文摘To better understand the mechanism of the Mw6.3 L'Aquila (Central Italy) earthquake occurred in 2009, global positioning system (GPS) and interferometric synthetic aperture radar (InSAR) data were used to derive the coseismic slip distribution of the earthquake fault. Firstly, based on the homogeneous elastic half-space model, the fault geometric parameters were solved by the genetic algorithm. The best fitting model shows that the fault is a 13.7 km×14.1 km rectangular fault, in 139.3° strike direction and 50.2° southwest-dipping. Secondly, fixing the optimal fault geometric parameters, the fault plane was extended and discretized into 16× 16 patches, each with a size of 1 kmx 1 krn, and the non-uniform slip distribution of the fault was inverted by the steepest descent method with an appropriate smoothing ratio based on the layered crustal structure model. The preferred solution shows that the fault is mainly a normal fault with slight right-lateral strike slip, the maximum slip of 1.01 m is located in the depth of 8.28 km, the average rake is -100.9°, and the total geodetic moment is about 3.34× 1018 N.m (Mw 6.28). The results are much closer than previous studies in comparison with the seismological estimation. These demonstrate that the coseismic fault slip distribution of the L'Aauila earthauake inverted by the crustal model considering layered characters is reliable.
基金Project(NCET-14-0318) supported by the Humanity and Social Science Youth Foundation of Ministry of Education,ChinaProject supported by the Training Program for Outstanding Young Teachers in Jilin University,ChinaProject(2014M551191) supported by China Postdoctoral Science Foundation
文摘Taxi drivers' cruising patterns are learnt with GPS trajectory data collected in Shenzhen, China. By employing Ripley's K function, the impacts of land use and pick-up experience on taxis' cruising behavior are investigated concerning about both intensity of influence and radius of influence. The results indicate that, in general, taxi drivers tend to learn more from land use characteristics than from pick-up experience. The optimal radius of influence of land use points and previous pick-up points is 14.18 km and 9.93 km, respectively. The findings also show that the high-earning drivers or thorough drivers pay more attention to land use characteristics and tend to cruise in high-density area, while the low-earning drivers or focus drivers prefer to learn more from previous pick-up experience and select the area which is far away from the high-density area. These findings facilitate the development of measures of managing taxi's travel behavior by providing useful insights into taxis' cruising patterns. The results also provide useful advice for taxi drivers to make efficient cruising decision, which will contribute to the improvement of cruising efficiency and the reduction of negative effects.