基于ISI-MIP(The Inter-Sectoral Impact Model Inter-comparison Project)推荐使用的5个全球气候模式数据(HadGEM2-ES,GFDL-ESM2M,MIROC-ESM-CHEM,Nor-ESM1-M,IPSL-CM5ALR),驱动SWIM(Soil and Water IntegratedModel)水文模型,研究全...基于ISI-MIP(The Inter-Sectoral Impact Model Inter-comparison Project)推荐使用的5个全球气候模式数据(HadGEM2-ES,GFDL-ESM2M,MIROC-ESM-CHEM,Nor-ESM1-M,IPSL-CM5ALR),驱动SWIM(Soil and Water IntegratedModel)水文模型,研究全球升温1.5℃和2.0℃情景下淮河上游干流径流量变化,得出结论:(1)淮河上游干流径流量年际变化在2种升温情景下均呈先减小后增加趋势。全球升温1.5℃时年径流量较基准期(1986—2005年)增长9.5%,而升温2.0℃情景下涨幅更明显,高达17%。(2) 4个季节径流量在2种升温情景下较基准期均有增长,其中春季涨幅最明显,达24.4%,夏、秋、冬季涨幅分别为7.1%、16.1%、13.5%。全球升温2.0℃时淮河上游干流径流量在4个季节较基准期增长率均大于全球升温1.5℃时。(3)不同气候模式输出日径流量最大值相差较大而平均值相差较小。未来2种升温情景日径流量超过王家坝闸设计流量的日次较基准期均有增加,尤其升温2.0℃情景较基准期增多22次,较升温1.5℃情景多5.8次,表明未来升温2.0℃情景下淮河上游出现极端径流事件的可能性进一步增大。展开更多
基于耦合模式比较计划第6阶段(CMIP6)中的全球气候模式的模拟结果,采用考虑模式性能和独立性结合(Climate model Weighting by Independence and Performance,ClimWIP)的加权方案进行中国区域气候的多模式集合预估及不确定性研究。结果...基于耦合模式比较计划第6阶段(CMIP6)中的全球气候模式的模拟结果,采用考虑模式性能和独立性结合(Climate model Weighting by Independence and Performance,ClimWIP)的加权方案进行中国区域气候的多模式集合预估及不确定性研究。结果表明,ClimWIP方案在历史阶段的模拟优于等权重方案,降低了多模式模拟的气候态偏差。温度指数的未来预估不确定性较大的区域主要集中在中国北方和青藏高原,而降水指数主要集中在华北和西北地区。ClimWIP方案的预估不确定性与等权重方案相比有所降低。ClimWIP方案预估的温度指数的增温大值区主要集中在中国北方和青藏高原;降水指数在西北和青藏高原增加最为显著。全球额外0.5℃增暖时,中国区域平均的温度指数变化更强,平均高于全球0.2℃,最低温在东北部分地区的额外增温甚至是全球平均的3倍;总降水额外增加5.2%;强降水额外增加10.5%。全球增暖2℃下,中国大部分区域温度指数较当前气候态增加可能超过1.5℃(概率>50%),在中国北方和青藏高原的部分地区增温超过1.5℃的可能性更大(概率>90%);总降水,强降水和连续干日在西北和华北增加幅度有可能超过10%、25%和-5 d(概率>50%)。展开更多
文摘基于ISI-MIP(The Inter-Sectoral Impact Model Inter-comparison Project)推荐使用的5个全球气候模式数据(HadGEM2-ES,GFDL-ESM2M,MIROC-ESM-CHEM,Nor-ESM1-M,IPSL-CM5ALR),驱动SWIM(Soil and Water IntegratedModel)水文模型,研究全球升温1.5℃和2.0℃情景下淮河上游干流径流量变化,得出结论:(1)淮河上游干流径流量年际变化在2种升温情景下均呈先减小后增加趋势。全球升温1.5℃时年径流量较基准期(1986—2005年)增长9.5%,而升温2.0℃情景下涨幅更明显,高达17%。(2) 4个季节径流量在2种升温情景下较基准期均有增长,其中春季涨幅最明显,达24.4%,夏、秋、冬季涨幅分别为7.1%、16.1%、13.5%。全球升温2.0℃时淮河上游干流径流量在4个季节较基准期增长率均大于全球升温1.5℃时。(3)不同气候模式输出日径流量最大值相差较大而平均值相差较小。未来2种升温情景日径流量超过王家坝闸设计流量的日次较基准期均有增加,尤其升温2.0℃情景较基准期增多22次,较升温1.5℃情景多5.8次,表明未来升温2.0℃情景下淮河上游出现极端径流事件的可能性进一步增大。
文摘基于耦合模式比较计划第6阶段(CMIP6)中的全球气候模式的模拟结果,采用考虑模式性能和独立性结合(Climate model Weighting by Independence and Performance,ClimWIP)的加权方案进行中国区域气候的多模式集合预估及不确定性研究。结果表明,ClimWIP方案在历史阶段的模拟优于等权重方案,降低了多模式模拟的气候态偏差。温度指数的未来预估不确定性较大的区域主要集中在中国北方和青藏高原,而降水指数主要集中在华北和西北地区。ClimWIP方案的预估不确定性与等权重方案相比有所降低。ClimWIP方案预估的温度指数的增温大值区主要集中在中国北方和青藏高原;降水指数在西北和青藏高原增加最为显著。全球额外0.5℃增暖时,中国区域平均的温度指数变化更强,平均高于全球0.2℃,最低温在东北部分地区的额外增温甚至是全球平均的3倍;总降水额外增加5.2%;强降水额外增加10.5%。全球增暖2℃下,中国大部分区域温度指数较当前气候态增加可能超过1.5℃(概率>50%),在中国北方和青藏高原的部分地区增温超过1.5℃的可能性更大(概率>90%);总降水,强降水和连续干日在西北和华北增加幅度有可能超过10%、25%和-5 d(概率>50%)。