期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
面向分割的局部分块与全局多尺度注意力机制
1
作者 谭荆彬 赵旭俊 苏慧娟 《计算机工程与设计》 北大核心 2025年第4期1141-1148,共8页
现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个... 现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个小块,分别计算这些小块的注意力得分,增强对局部信息的感知能力。使用一组空洞卷积计算整个特征图的得分,获得全局多尺度信息的权衡。实验中,将PGMA集成到U-Net、DeepLab、SegNet等语义分割网络中,有效提升了它们的分割性能。这表明PGMA在增强CNN性能方面优于当前主流方法。 展开更多
关键词 卷积神经网络 注意力机制 局部信息 分块策略 细节感知 全局多尺度信息 语义分割
在线阅读 下载PDF
整合边缘卷积与全局-局部自注意力的机载点云分类
2
作者 涂静敏 严进 +3 位作者 李礼 姚剑 李婕 康妍斐 《光学精密工程》 CSCD 北大核心 2024年第24期3658-3673,共16页
激光点云分类是实现三维场景理解的基础。针对机载点云大场景分类中存在的特征表达不足、样本类别不均衡的问题,本文提出一种整合边缘卷积与全局-局部自注意力的机载点云分类方法。首先,以U-net为网络框架,融合Point Transformer与边缘... 激光点云分类是实现三维场景理解的基础。针对机载点云大场景分类中存在的特征表达不足、样本类别不均衡的问题,本文提出一种整合边缘卷积与全局-局部自注意力的机载点云分类方法。首先,以U-net为网络框架,融合Point Transformer与边缘卷积模块,使得模型能够关注到复杂地物边界和纹理信息,获得表达能力更好的局部几何特征。其次,创新性地提出一种融合全局上下文信息和局部结构特征的自注意力机制,全局自注意力模块倾向于整个输入序列的信息,而局部自注意力模块则更注重于局部区域的细节。两种机制结合增强了对长距离依赖关系和局部结构的捕捉,同时使得模型能够兼顾少数类别的关键特征,在一定程度上降低样本类别不均衡对分类精度的影响,有助于提高模型对复杂地物关系的分类能力。最后,在公开的ISPRS-3D数据集和WHU-Urban3D数据集上对本文所提出的方法进行验证,实验结果表明,该方法在两个数据集上的分类精度分别为82.5%和87.4%,优于PointNet++,Stratified Transformer等经典网络及ISPRS 3D官网竞赛网络,可有效提升机载点云分类精度。 展开更多
关键词 机载激光雷达 点云分类 边缘卷积 全局-局部注意力 U-net
在线阅读 下载PDF
GLCrowd:基于全局-局部注意力的弱监督密集场景人群计数模型 被引量:1
3
作者 张红民 田钱前 +1 位作者 颜鼎鼎 卜令宇 《光电工程》 CAS CSCD 北大核心 2024年第10期75-86,共12页
针对人群计数在密集场景下存在背景复杂、尺度变化大等问题,提出了一种结合全局-局部注意力的弱监督密集场景人群计数模型——GLCrowd。首先,设计了一种结合深度卷积的局部注意力模块,通过上下文权重增强局部特征,同时结合特征权重共享... 针对人群计数在密集场景下存在背景复杂、尺度变化大等问题,提出了一种结合全局-局部注意力的弱监督密集场景人群计数模型——GLCrowd。首先,设计了一种结合深度卷积的局部注意力模块,通过上下文权重增强局部特征,同时结合特征权重共享获得高频局部信息。其次,利用Vision Transformer(ViT)的自注意力机制捕获低频全局信息。最后,将全局与局部注意力有效融合,并通过回归令牌来完成计数。在Shanghai Tech PartA、Shanghai Tech PartB、UCF-QNRF以及UCF_CC_50数据集上进行了模型测试,MAE分别达到了64.884、8.958、95.523、209.660,MSE分别达到了104.411、16.202、173.453、282.217。结果表明,提出的GLCrowd网络模型在密集场景下的人群计数中具有较好的性能。 展开更多
关键词 人群计数 Vision Transformer 全局-局部注意力 弱监督学习
在线阅读 下载PDF
基于全局-局部特征和自适应注意力机制的图像语义描述算法 被引量:6
4
作者 赵小虎 尹良飞 赵成龙 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第1期126-134,共9页
为了探究图像底层视觉特征与高层语义概念存在的差异,提出可以确定图像关注重点、挖掘更高层语义信息以及完善描述句子的细节信息的图像语义描述算法.在图像视觉特征提取时提取输入图像的全局-局部特征作为视觉信息输入,确定不同时刻对... 为了探究图像底层视觉特征与高层语义概念存在的差异,提出可以确定图像关注重点、挖掘更高层语义信息以及完善描述句子的细节信息的图像语义描述算法.在图像视觉特征提取时提取输入图像的全局-局部特征作为视觉信息输入,确定不同时刻对图像的关注点,对图像细节的描述更加完善;在解码时加入注意力机制对图像特征加权输入,可以自适应选择当前时刻输出的文本单词对视觉信息与语义信息的依赖权重,有效地提高对图像语义描述的性能.实验结果表明,该方法相对于其他语义描述算法效果更有竞争力,可以更准确、更细致地识别图片中的物体,对输入图像进行更全面地描述;对于微小的物体的识别准确率更高. 展开更多
关键词 图像语义描述 图像关注点 高层语义信息 描述句子细节 全局-局部特征提取 自适应注意力机制
在线阅读 下载PDF
局部注意力引导下的全局池化残差分类网络 被引量:2
5
作者 姜文涛 董睿 张晟翀 《光电工程》 CAS CSCD 北大核心 2024年第7期107-124,共18页
大部分注意力机制虽然能增强图像特征,但没有考虑局部特征的关联性影响特征整体的问题。针对以上问题,本文提出局部注意力引导下的全局池化残差分类网络(MSLENet)。MSLENet的基线网络为ResNet34,首先改变首层结构,保留图像重要信息;其... 大部分注意力机制虽然能增强图像特征,但没有考虑局部特征的关联性影响特征整体的问题。针对以上问题,本文提出局部注意力引导下的全局池化残差分类网络(MSLENet)。MSLENet的基线网络为ResNet34,首先改变首层结构,保留图像重要信息;其次提出多分割局部增强注意力机制(MSLE)模块,MSLE模块将图像整体分割成多个小图像,增强每个小图像的局部特征,通过特征组交互的方式将局部重要特征引导到全局特征中;最后提出池化残差(PR)模块来处理ResNet残差结构丢失信息的问题,提高各层之间的信息利用率。实验结果表明,MSLENet通过增强局部特征的关联性,在多个数据集上均有良好的效果,有效地提高了网络的表达能力。 展开更多
关键词 图像分类 注意力机制 残差结构 局部特征 全局特征 关联性
在线阅读 下载PDF
融合多特征与全局-局部Transformer的图像修复算法
6
作者 滕诗宇 何丽君 《电子测量技术》 北大核心 2025年第6期121-129,共9页
针对当前图像修复领域所面临的高计算复杂度以及在生成结构合理且细节丰富的图像方面的局限,提出了一种融合多尺度分层特征与全局-局部协同Transformer的图像修复模型。首先提出多尺度分层特征融合模块,以实现深层特征与浅层特征细节上... 针对当前图像修复领域所面临的高计算复杂度以及在生成结构合理且细节丰富的图像方面的局限,提出了一种融合多尺度分层特征与全局-局部协同Transformer的图像修复模型。首先提出多尺度分层特征融合模块,以实现深层特征与浅层特征细节上的有效融合,在扩大感受野的同时减少关键信息丢失情况。其次提出用于全局推理的全局-局部协同Transformer模块,它通过集成矩形窗口注意力机制和局部前馈神经网络,在降低计算复杂度的同时,提高模型对全局上下文信息的宏观理解和对局部细节特征的微观捕捉能力,增强图像的整体一致性。实验在CelebA-HQ和Places2数据集上进行了验证,在处理40%~50%掩码时,所提方法与常用的修复方法对比,PSNR平均提高了0.26~6.25 dB,SSIM平均提升了1.4%~19%,L1平均下降了0.2%~5.66%。实验证明,所提方法修复后的图像在视觉上具有更加真实和自然的效果,进一步验证了该方法的有效性。 展开更多
关键词 深度学习 图像修复 多尺度分层特征融合 全局-局部协同Transformer 矩形窗口注意力机制 局部前馈神经网络
在线阅读 下载PDF
基于全局注意力的Gam-EEGNet在SSVEP分类中的应用 被引量:2
7
作者 刘俊杰 谢俊 +1 位作者 王虎 胡博 《电子测量技术》 北大核心 2024年第22期76-83,共8页
稳态视觉诱发电位(SSVEP)作为脑机接口(BCI)系统中的重要信号类型,因其高稳定性和易操作性而广泛应用于BCI研究。在过去的研究中,已有许多方法在SSVEP信号分类中取得了显著进展,但依然面临着信噪比低、信号非平稳性和个体差异大的挑战... 稳态视觉诱发电位(SSVEP)作为脑机接口(BCI)系统中的重要信号类型,因其高稳定性和易操作性而广泛应用于BCI研究。在过去的研究中,已有许多方法在SSVEP信号分类中取得了显著进展,但依然面临着信噪比低、信号非平稳性和个体差异大的挑战。为进一步提升SSVEP分类的准确性和实用性,本文提出了一种结合全局注意力机制与紧凑脑电网络(EEGNet)的新型神经网络架构——Gam-EEGNet。EEGNet作为一种紧凑、高效且适应性强的基础模型,在SSVEP信号处理中具有重要作用。通过在EEGNet中引入全局注意力机制,Gam-EEGNet能够更精确地提取和表征SSVEP信号特征,从而有效降低个体差异和噪声的影响。实验采用了涵盖12种不同频率的SSVEP脑电数据,并将Gam-EEGNet与典型卷积神经网络(CCNN)、滤波器组-时间卷积神经网络(FB-tCNN)和滤波器组-时间卷积神经网络(SSVEPNet)等主流深度学习方法进行了分类性能对比。结果表明,Gam-EEGNet在不同时间窗口下的分类准确率和信息传输率(ITR)均优于其他方法,特别是在0.7 s的短时间窗口内,分类精度达到86.58%;在1 s时间窗内,多名被试者的平均识别准确率超过95%,ITR超过189 bits/min。此外,Gam-EEGNet在训练过程中表现出更好的收敛性和稳定性,具有更快的收敛速度和更低的训练误差。这些结果表明,Gam-EEGNet在SSVEP信号分类中展现出显著的性能提升,尤其适用于实时BCI系统中的快速响应场景,具有广泛的应用潜力。 展开更多
关键词 深度学习 -机接口 稳态视觉诱发电位 全局注意力机制 Gam-EEGNet模型
在线阅读 下载PDF
结合全局-局部特征和注意力的图像描述方法 被引量:2
8
作者 谢琦彬 陈平华 《计算机工程与应用》 CSCD 北大核心 2022年第12期218-225,共8页
为了进一步提高图像描述生成文本的精度,提出一种结合全局-局部特征和注意力机制的图像描述方法。该方法在传统的编码器-解码器模型上进行改进,从整体角度来看,编码器阶段使用残差网络ResNet101提取图像的全局特征和局部特征,以避免对... 为了进一步提高图像描述生成文本的精度,提出一种结合全局-局部特征和注意力机制的图像描述方法。该方法在传统的编码器-解码器模型上进行改进,从整体角度来看,编码器阶段使用残差网络ResNet101提取图像的全局特征和局部特征,以避免对象丢失或对象预测错误问题,在解码器阶段采用嵌入改进后的注意力机制的双向GRU生成文本序列。从局部角度来看,该模型提出的注意力机制是一种独立的循环结构,通过计算图像局部特征向量与语义向量之间的相似度来获取注意力权重,增强图像特征与语义信息之间的映射。在MSCOCO数据集上的实验结果显示,该算法在BLEU、CIDEr、METEOR等评价指标上均获得了不同程度的提升,表明使用该模型生成的描述文本准确度高且细节丰富。 展开更多
关键词 图像描述 注意力机制 编码器-解码器框架 全局特征 局部特征
在线阅读 下载PDF
局部-全局特征引导的图文多级关系分析与挖掘方法
9
作者 王海荣 郭瑞萍 +1 位作者 徐玺 周北京 《燕山大学学报》 CAS 北大核心 2024年第5期446-455,共10页
具有语义相关性的文本、图像数据往往具有互补性,可以从不同角度增强语义理解,因此,图文语义关系挖掘是图文数据得以充分利用的关键。为解决图文数据深层语义关系挖掘不充分、检索阶段预测不精准的问题,本文提出了一种局部-全局特征引... 具有语义相关性的文本、图像数据往往具有互补性,可以从不同角度增强语义理解,因此,图文语义关系挖掘是图文数据得以充分利用的关键。为解决图文数据深层语义关系挖掘不充分、检索阶段预测不精准的问题,本文提出了一种局部-全局特征引导的多级关系分析与挖掘方法。采用多头自注意力机制的Transformer建模图像关系,构建图像引导的文本注意力模块,挖掘图像区域和全局文本间的细粒度关系,融合局部-全局特征有效增强图文数据的语义关系。为验证本文方法,在Flickr30K、MSCOCO-1K和MSCOCO-3K数据集上进行实验,并与VSM、SGRAF等13种方法进行对比分析,本文方法中以文索图的召回率平均提升了0.62%,以图索文的召回率平均提高了0.5%,实验结果验证了本文方法的有效性。 展开更多
关键词 图文关系挖掘 多头自注意力机制 局部-全局特征
在线阅读 下载PDF
利用全局与局部帧级特征进行基于共享注意力的视频问答 被引量:1
10
作者 王雷全 候文艳 +3 位作者 袁韶祖 赵欣 林瑶 吴春雷 《计算机科学》 CSCD 北大核心 2021年第8期145-149,共5页
视频问答是视觉理解领域中非常重要且具有挑战性的任务。目前的视觉问答(VQA)方法主要关注单个静态图片的问答,而现实生活中的数据是立体动态的视频。此外,由于问题的复杂性,视频问答任务必须根据问答问题恰当地处理多种视觉特征才能获... 视频问答是视觉理解领域中非常重要且具有挑战性的任务。目前的视觉问答(VQA)方法主要关注单个静态图片的问答,而现实生活中的数据是立体动态的视频。此外,由于问题的复杂性,视频问答任务必须根据问答问题恰当地处理多种视觉特征才能获得高质量的答案。文中提出了一个通过利用局部和全局帧级别的视觉信息来进行视频问答的多共享注意力网络。具体来说,以不同帧率提取视频帧,并以此提取帧级的全局与局部视觉特征,这两种特征包含了多个帧级别特征,用于对视频时间动态建模,再以共享注意力的形式建模全局与局部视觉特征的相关性,然后结合文本问题来推断答案。在天池视频问答数据集上进行了大量的实验,验证了所提方法的有效性。 展开更多
关键词 视频问答 共享注意力机制 全局局部帧级特征
在线阅读 下载PDF
基于全局与局部特征加权融合的隐喻识别模型
11
作者 马月坤 马铭佑 《计算机工程》 北大核心 2025年第5期143-153,共11页
部分文本中隐喻本体与喻体位置相距较远,导致模型学习文本语境信息的难度增大,以及所提取的特征中重要信息不明显。为此,提出一种基于全局与局部特征加权融合的隐喻识别模型。首先,设计了局部特征提取模块(LFEM),通过对不同范围以及更... 部分文本中隐喻本体与喻体位置相距较远,导致模型学习文本语境信息的难度增大,以及所提取的特征中重要信息不明显。为此,提出一种基于全局与局部特征加权融合的隐喻识别模型。首先,设计了局部特征提取模块(LFEM),通过对不同范围以及更大感受野下文本局部特征的关注来达到学习词语周围不同距离语境信息的目的;其次,使用双向长短时记忆(BiLSTM)与多头注意力构成全局特征提取模块(GFEM),学习宏观句子级语义信息;最后,设计了特征加权融合模块(FWFM),对提取得到的2种特征进行自适应动态融合,以较少的噪声获得鲁棒性更强且重要信息更为集中的特征。实验结果表明,相比RoBERTa+Transformer+GCN模型,所提模型在VUA ALLPOS、TOEFL ALLPOS以及CCL 3个数据集上的F1值分别提升了1.1、1.2和3.2百分点,所提模型具有更高的隐喻识别精度。 展开更多
关键词 隐喻识别 全局特征 局部特征 特征加权 注意力机制 双向长短时记忆
在线阅读 下载PDF
全局-局部特征融合的人体姿态估计算法
12
作者 毛琳 任春贺 杨大伟 《电子测量技术》 北大核心 2024年第10期115-125,共11页
针对现有人体姿态估计算法存在因骨干网络特征提取不充分,导致关键点特征信息丢失的问题,提出一种结合全局-局部特征融合模块的人体姿态估计网络模型(GLF-Net)。为了在特征提取阶段获得高质量的特征图,该算法从全局特征和局部特征出发,... 针对现有人体姿态估计算法存在因骨干网络特征提取不充分,导致关键点特征信息丢失的问题,提出一种结合全局-局部特征融合模块的人体姿态估计网络模型(GLF-Net)。为了在特征提取阶段获得高质量的特征图,该算法从全局特征和局部特征出发,对骨干网络ResNet-50进行改进,分别设计了全局极化自注意力模块和局部深度可分离卷积模块。同时采用并行的结构方式将融合了全局位置信息和局部语义信息特征的模块嵌入到骨干网络的Bottleneck层中,既能增强原骨干网络的特征提取能力,又为后续的Transformer网络提供有效的全局和局部特征输入,进而提高姿态关键点检测的性能。在公开人体姿态估计数据集COCO 2017上和MPII数据集上分别进行模型测试,该算法性能与与基准算法(Poseur)相比,姿态关键点的平均准确度(AP)提升了2.1%,平均召回率(AR)提升了1.5%,正确估计关键点比例(PCKh@0.5)最高达到90.6。实验结果表明,所提算法在姿态估计精度上优于现存同类方法,可以明显提高人体姿态关键点的定位准确度。 展开更多
关键词 人体姿态估计 特征提取 全局极化自注意力 局部深度可分离卷积 全局-局部特征融合
在线阅读 下载PDF
基于三分支对抗学习和补偿注意力的红外和可见光图像融合 被引量:1
13
作者 邸敬 任莉 +2 位作者 刘冀钊 郭文庆 廉敬 《红外技术》 CSCD 北大核心 2024年第5期510-521,共12页
针对现有深度学习图像融合方法依赖卷积提取特征,并未考虑源图像全局特征,融合结果容易产生纹理模糊、对比度低等问题,本文提出一种基于三分支对抗学习和补偿注意力的红外和可见光图像融合方法。首先,生成器网络采用密集块和补偿注意力... 针对现有深度学习图像融合方法依赖卷积提取特征,并未考虑源图像全局特征,融合结果容易产生纹理模糊、对比度低等问题,本文提出一种基于三分支对抗学习和补偿注意力的红外和可见光图像融合方法。首先,生成器网络采用密集块和补偿注意力机制构建局部-全局三分支提取特征信息。然后,利用通道特征和空间特征变化构建补偿注意力机制提取全局信息,更进一步提取红外目标和可见光细节表征。其次,设计聚焦双对抗鉴别器,以确定融合结果和源图像之间的相似分布。最后,选用公开数据集TNO和RoadScene进行实验并与其他9种具有代表性的图像融合方法进行对比,本文提出的方法不仅获得纹理细节更清晰、对比度更好的融合结果,而且客观度量指标优于其他先进方法。 展开更多
关键词 红外可见光图像融合 局部-全局三分支 局部特征提取 补偿注意力机制 对抗学习 聚焦双对抗鉴别器
在线阅读 下载PDF
基于注意力机制和姿态识别的行人再识别 被引量:1
14
作者 赵彦如 牛东杰 杨蕙萌 《河南理工大学学报(自然科学版)》 CAS 北大核心 2023年第2期120-126,共7页
在解决行人再识别技术中的姿态变化、遮挡、背景等问题时,为了提高遮挡下的行人再识别性能,提出一种基于注意力机制和姿态识别的行人再识别方法。采用全局注意网络和姿态识别网络分别提取行人图像的全局特征、关节点位置热力图和对应的... 在解决行人再识别技术中的姿态变化、遮挡、背景等问题时,为了提高遮挡下的行人再识别性能,提出一种基于注意力机制和姿态识别的行人再识别方法。采用全局注意网络和姿态识别网络分别提取行人图像的全局特征、关节点位置热力图和对应的置信度,通过计算得到行人13个关节点和融合所有关节点的局部特征,对全局特征和14个局部特征分别进行行人分类训练,利用多任务学习多个损失共同监督网络的优化。测试时,将关键点特征和全局特征融合后,计算行人的距离排序。在Market1501和DukeMTMC-reID数据集上测试的Rank-1/mAP指标分别达到了85.1%/75.6%和64.3%/55.3%。结果表明,所设计方法具备抗姿态变化、遮挡和背景的能力,同时具有较高的识别能力和识别精度。 展开更多
关键词 深度学习 行人再识别 注意力机制 姿态识别 特征融合 局部特征 全局特征
在线阅读 下载PDF
基于全局与局部多尺度上下文的电表数据检测
15
作者 马天磊 符俊 +2 位作者 马琪 杨震 刘新浩 《应用光学》 CAS 北大核心 2024年第4期804-811,共8页
电力系统中配电箱的电表数据检测为电力管理和安全运行提供了重要的数据支持。传统的人工电表数据读取方法效率低下且易出错,而现有深度学习方法因模型参数量大限制了模型的应用。针对上述问题,提出了一种轻量化鲁棒的实时电表检测方法... 电力系统中配电箱的电表数据检测为电力管理和安全运行提供了重要的数据支持。传统的人工电表数据读取方法效率低下且易出错,而现有深度学习方法因模型参数量大限制了模型的应用。针对上述问题,提出了一种轻量化鲁棒的实时电表检测方法。通过减少特征提取网络的层数和通道数,减少模型的参数量,实现网络的轻量化。在减少网络参数量的同时,为了保证网络的特征表达能力和拟合能力,引入全局上下文和局部多尺度上下文丰富目标特征表达。全局上下文关注电表数据在电表箱中的位置,局部多尺度上下文适应不同尺寸的电表数据。实验结果表明,所提网络在参数量更小的情况下,仍能获得比其他检测方法更高的准确率和更快的检测速度。 展开更多
关键词 电表数据检测 全局上下文 局部上下文 深度学习 注意力机制
在线阅读 下载PDF
局部信息和全局信息相结合的点云处理网络 被引量:2
16
作者 刘玉杰 原亚夫 +1 位作者 孙晓瑞 李宗民 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2023年第6期770-780,共11页
针对当前主流点云处理网络仅依靠局部邻域进行特征聚合导致特征提取能力不足,以及使用最大值池化造成信息损失的问题,提出了一种基于注意力的局部信息和全局信息相结合的点云处理网络。首先提出了基于通道自注意力进行局部特征聚合的方... 针对当前主流点云处理网络仅依靠局部邻域进行特征聚合导致特征提取能力不足,以及使用最大值池化造成信息损失的问题,提出了一种基于注意力的局部信息和全局信息相结合的点云处理网络。首先提出了基于通道自注意力进行局部特征聚合的方法,减少了信息的损失;然后为捕获点的远程依赖信息,设计了一种动态学习关键点的方法获取全局信息;最后构建了一种基于空间注意力的特征融合模块,使每个点均能学习全局上下文信息。在几个常用点云数据集上对方法进行了实验验证,在ModelNet40分类任务上实现了94.0%的总体分类精度、91.7%的平均分类精度;在ScanObjectNN分类任务上实现了81.5%的总体分类精度、78.1%的平均分类精度;在ShapeNet分割任务上实现了86.5%的平均交并比。表明提出的点云处理网络在分类、分割等任务中的精度均较PointNet、PointNet++、DGCNN等经典网络有显著提升,较其他点云处理网络也有不同程度的提高。 展开更多
关键词 点云分类 点云分割 注意力机制 全局信息 局部信息
在线阅读 下载PDF
双向建模增强TKAN和全局注意力机制融合的滚动轴承剩余寿命预测
17
作者 姜蕾 郑建飞 +3 位作者 胡昌华 赵瑞星 韩其辉 杨立浩 《自动化学报》 2025年第8期1857-1868,共12页
滚动轴承剩余使用寿命(RUL)的精准预测是确保设备或系统安全可靠运行的关键.针对滚动轴承RUL预测中多维退化特征的长期依赖关系难以有效建模的问题,提出一种双向时间序列建模与注意力机制融合的预测模型——双向时序科尔莫戈洛夫−阿诺... 滚动轴承剩余使用寿命(RUL)的精准预测是确保设备或系统安全可靠运行的关键.针对滚动轴承RUL预测中多维退化特征的长期依赖关系难以有效建模的问题,提出一种双向时间序列建模与注意力机制融合的预测模型——双向时序科尔莫戈洛夫−阿诺尔德注意力网络(Bi-TKAN-Att).该模型兼具了时序科尔莫戈洛夫−阿诺尔德网络的强时序建模能力和全局注意力机制的关键特征提取能力,采用双向建模的方式捕捉前后向信息,最终实现了具有长期依赖多维退化特征的滚动轴承RUL预测.所提方法在滚动轴承数据集上进行实验验证,结果表明Bi-TKAN-Att模型在捕获滚动轴承退化特性和提升RUL预测精度方面具有显著优势,并通过消融实验证明了模型各组件的合理性和有效性,为滚动轴承的寿命预测提供了全新可行的解决方案. 展开更多
关键词 剩余使用寿命预测 滚动轴承 时序科尔莫戈洛夫-阿诺尔德网络 双向建模 全局注意力机制
在线阅读 下载PDF
融合注意力与多层次特征提取的行人再识别方法 被引量:2
18
作者 张荣 王进 +2 位作者 张天奇 张琳钰 万杰 《传感器与微系统》 CSCD 北大核心 2023年第12期68-71,74,共5页
在行人再识别任务中,仅使用全局特征并不能很好地表示行人特征。提出一种将局部特征与全局特征相融合并嵌入注意力机制的方法。采用2个网络分支结构,分别进行局部和全局特征提取,并且在提取行人特征过程中,嵌入空间注意力机制和通道注... 在行人再识别任务中,仅使用全局特征并不能很好地表示行人特征。提出一种将局部特征与全局特征相融合并嵌入注意力机制的方法。采用2个网络分支结构,分别进行局部和全局特征提取,并且在提取行人特征过程中,嵌入空间注意力机制和通道注意力机制,通过关注图像的局部和全局信息,增强特征表示能力。在数据处理阶段,引入随机加噪与随机擦除的数据增强方法,解决行人再识别过程中物体遮挡及噪声干扰问题,提高模型鲁棒性。在3个数据集上进行实验,将几种先进的行人再识别方法相比较,结果表明,该方法的均值平均精度(mAP)值和Rank—1值更高。 展开更多
关键词 行人再识别 深度学习 全局特征 局部特征 注意力机制
在线阅读 下载PDF
基于注意力残差编解码网络的动态场景图像去模糊 被引量:8
19
作者 杨飞璠 李晓光 卓力 《应用光学》 CAS CSCD 北大核心 2021年第4期685-690,共6页
动态场景下的图像去模糊技术是一个具有挑战性的计算机视觉问题。模糊图像不仅影响主观感受,还会影响后续的智能化分析的性能。提出了一种基于注意力残差编解码网络的动态场景图像去模糊方法。首先,编码阶段采用多个残差模块提取特征,... 动态场景下的图像去模糊技术是一个具有挑战性的计算机视觉问题。模糊图像不仅影响主观感受,还会影响后续的智能化分析的性能。提出了一种基于注意力残差编解码网络的动态场景图像去模糊方法。首先,编码阶段采用多个残差模块提取特征,加入空间注意力模块感知模糊的空间位置信息;其次,通过在网络中采用全局-局部残差连接策略融合多层卷积特征,减少信息丢失;最后,解码阶段生成具有清晰边缘结构的复原图像。实验结果显示,提出的算法在公开数据集上获得的峰值信噪比值为31.76 dB,结构相似性值为0.912。客观和主观质量评估表明,本文算法能够有效地复原包含丰富边缘轮廓信息的清晰图像,在对比算法中获得最优的性能。 展开更多
关键词 图像去模糊 空间注意力 全局-局部残差连接 特征融合
在线阅读 下载PDF
面向点云理解的双邻域图卷积方法
20
作者 李宗民 徐畅 +2 位作者 白云 鲜世洋 戎光彩 《浙江大学学报(工学版)》 北大核心 2025年第5期879-889,共11页
针对现有方法对局部点云结构建模时空间跨度有限以及传统特征聚合方法造成一定信息损失的问题,提出双邻域图卷积网络(DNGCN).在原始点云中增加角度先验,以增强对点云局部几何结构的理解,捕捉局部细节.对原始邻域进行扩展,在局域内设计... 针对现有方法对局部点云结构建模时空间跨度有限以及传统特征聚合方法造成一定信息损失的问题,提出双邻域图卷积网络(DNGCN).在原始点云中增加角度先验,以增强对点云局部几何结构的理解,捕捉局部细节.对原始邻域进行扩展,在局域内设计双邻域图卷积,通过集成高斯自适应聚合,在提取较大感受野范围内显著特征的同时,充分保留原始邻域信息.通过局部-全局信息交互来增大局部点的空间跨度,捕获远距离依赖关系.本文方法在分类数据集ModelNet40和ScanObjectNN上分别取得了94.1%、89.6%的总体精度,与其他先进算法相比有显著提升,较DGCNN分别提升了1.2%、11.5%.在部件分割数据集ShapeNetPart和语义分割数据集ScanNetv2、S3DIS上均获得优秀的性能,平均交并比分别为86.7%、74.9%和69.8%.通过大量的实验,证明了该模型的有效性. 展开更多
关键词 点云特征 图卷积网络 几何增强 局部全局交互 注意力机制
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部