期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
GLCrowd:基于全局-局部注意力的弱监督密集场景人群计数模型
1
作者 张红民 田钱前 +1 位作者 颜鼎鼎 卜令宇 《光电工程》 CAS CSCD 北大核心 2024年第10期75-86,共12页
针对人群计数在密集场景下存在背景复杂、尺度变化大等问题,提出了一种结合全局-局部注意力的弱监督密集场景人群计数模型——GLCrowd。首先,设计了一种结合深度卷积的局部注意力模块,通过上下文权重增强局部特征,同时结合特征权重共享... 针对人群计数在密集场景下存在背景复杂、尺度变化大等问题,提出了一种结合全局-局部注意力的弱监督密集场景人群计数模型——GLCrowd。首先,设计了一种结合深度卷积的局部注意力模块,通过上下文权重增强局部特征,同时结合特征权重共享获得高频局部信息。其次,利用Vision Transformer(ViT)的自注意力机制捕获低频全局信息。最后,将全局与局部注意力有效融合,并通过回归令牌来完成计数。在Shanghai Tech PartA、Shanghai Tech PartB、UCF-QNRF以及UCF_CC_50数据集上进行了模型测试,MAE分别达到了64.884、8.958、95.523、209.660,MSE分别达到了104.411、16.202、173.453、282.217。结果表明,提出的GLCrowd网络模型在密集场景下的人群计数中具有较好的性能。 展开更多
关键词 人群计数 Vision Transformer 全局-局部注意力 弱监督学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部