针对开关磁阻电机(switched reluctance motor,SRM)传统滑模控制方法响应速度慢、抖振大且鲁棒性差的问题,该文提出一种基于双滑模控制器的开关磁阻电机调速策略。首先,设计全局积分滑模速度控制器(global integral sliding model speed...针对开关磁阻电机(switched reluctance motor,SRM)传统滑模控制方法响应速度慢、抖振大且鲁棒性差的问题,该文提出一种基于双滑模控制器的开关磁阻电机调速策略。首先,设计全局积分滑模速度控制器(global integral sliding model speed controller,GISMSC),消除系统到达滑模面的过程,提高响应速度和鲁棒性,并通过改进趋近律来减小滑模抖振;其次,设计扰动滑模观测器(disturbance sliding mode observer,DSMO),对负载和未知扰动进行观测,并前馈补偿至全局积分滑模速度控制器中,进而复合构成双滑模速度控制器,并将其作为速度外环与模型预测控制(model predictive control,MPC)相结合,减小转矩脉动的同时提升其调速性能;最后,仿真和实验考虑到转速和负载突变以及电机参数失配等情况,结果表明,所提方法不仅提高了系统调速性能,减小了转矩脉动,而且克服了电机内部参数变化和外部扰动的影响,使系统具备更强鲁棒性。展开更多
A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According...A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.展开更多
基金Project(61673386)supported by the National Natural Science Foundation of ChinaProject(2018QNJJ006)supported by the High-Tech Institute of Xi’an,China
文摘A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.