期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
面向视障人群的室内视觉辅助算法的研究
1
作者 欧阳玉旋 张荣芬 +1 位作者 刘宇红 彭垚潘 《激光技术》 北大核心 2025年第2期166-174,共9页
为了解决现有室内视觉辅助算法检测性能低、模型参数量大、不易部署于边缘设备等问题,对你只看一次(YOLO)网络YOLOv7-tiny进行改进,提出一种新的YOLOv7-ghost网络模型。针对模型参数量大的问题,引入幽灵瓶颈(GB)代替部分池化操作和高效... 为了解决现有室内视觉辅助算法检测性能低、模型参数量大、不易部署于边缘设备等问题,对你只看一次(YOLO)网络YOLOv7-tiny进行改进,提出一种新的YOLOv7-ghost网络模型。针对模型参数量大的问题,引入幽灵瓶颈(GB)代替部分池化操作和高效层聚合网络(ELAN),大幅度降低模型参数量;构建了一个全新的高性能轻量化模块(即C2f-全局注意力模块),综合考虑全局和局部特征信息,更好地捕捉节点的上下文信息;然后引入快速空间金字塔池化和幽灵瓶颈(SPPF-GB)模块,对特征进行重组和压缩,以融合不同尺度的特征信息、增强特征的表达能力;最后在头部引入可变形卷积(DCN),增强感受野的表达能力,以捕获目标周围更细粒度的目标结构和背景信息。结果表明,改进后的模型参数量下降了20.33%,模型大小下降了18.70%,平均精度mAP@0.50和mAP@0.50~0.95分别提升了1.2%和3.3%。该网络模型在保证轻量化的同时,检测精度得到了大幅度的提升,更利于室内场景目标检测算法实际应用的部署。 展开更多
关键词 图像处理 轻量化 幽灵瓶颈模块 C2f-全局注意力模块 多尺度特征融合 可变形卷积 YOLOv7-tiny网络模型
在线阅读 下载PDF
基于MTF-DARCNN的滚动轴承故障诊断方法
2
作者 金岩 缪成翔 《机电工程》 北大核心 2025年第11期2084-2095,共12页
针对传统卷积神经网络模型由于滚动轴承的负载或转速变化而导致故障识别性能下降这一问题,提出了一种创新的基于马尔科夫转移场(MTF)与双注意力残差卷积神经网络(DARCNN)的轴承故障诊断方法。首先,采用MTF将原始信号转换为具有时间相关... 针对传统卷积神经网络模型由于滚动轴承的负载或转速变化而导致故障识别性能下降这一问题,提出了一种创新的基于马尔科夫转移场(MTF)与双注意力残差卷积神经网络(DARCNN)的轴承故障诊断方法。首先,采用MTF将原始信号转换为具有时间相关性的二维图像,这种转换有助于更好地捕捉信号的时序特征;然后,构建了压缩和激励-多尺度注意力模块(SE-MSAM),该模块能够有效提取不同尺度下的特征信息,以增强模型对多层次特征的理解;接着,设计了轻量级残差模块(LRM),该模块不仅降低了计算复杂度,还提升了特征学习的有效性,增强了模型的整体性能;最后,引入全局注意力模块(GAM)提升了特征区分,基于此开发MTF-DARCNN方法用于轴承故障诊断;并采用了美国凯斯西储大学及本实验室机械故障模拟(MFS)轴承数据集,在变工况条件下,对模型故障诊断的鲁棒性与泛化性能进行了实验验证。研究结果表明:MTF-DARCNN方法在变负载和变转速的工况下,平均识别准确率分别达到了99%和98.47%;此外,在不同工况下,该方法的诊断稳定性也明显优于其他诊断方法;这些高准确率的结果充分验证了MTF-DARCNN方法不仅具备卓越的故障识别能力,还展现了在面对多样化工况挑战时的更高泛化能力。这意味着在工况变化的条件下,该方法能有效进行故障诊断,确保设备的正常运行。 展开更多
关键词 轴承故障识别准确率 马尔科夫转移场 注意力残差卷积神经网络 压缩和激励-多尺度注意力模块 轻量级残差模块 全局注意力模块 机械故障模拟
在线阅读 下载PDF
基于边缘感知和小样本学习的多尺度带钢表面缺陷分割方法 被引量:2
3
作者 郭学俊 彭赞 《太原理工大学学报》 CAS 北大核心 2022年第5期895-901,共7页
深度全卷积语义分割网络能够提供像素级带钢表面缺陷检测,对于带钢质量控制具有至关重要的作用。但是这类模型大多无法感知缺陷边缘,而且性能往往严重依赖大量精确标注的标签样本,严重影响其实际应用。为了解决以上困难,提出了一种基于... 深度全卷积语义分割网络能够提供像素级带钢表面缺陷检测,对于带钢质量控制具有至关重要的作用。但是这类模型大多无法感知缺陷边缘,而且性能往往严重依赖大量精确标注的标签样本,严重影响其实际应用。为了解决以上困难,提出了一种基于边缘感知和小样本学习的多尺度带钢表面缺陷语义分割网络。该网络由两个级联的子网络组成。第一个子网络首先利用改进的一次性聚合模块和特征金字塔注意力模块构建编码器,提取多层级和多尺度特征并降低训练所需的数据量。然后将一系列全局注意力上采样模块作为解码器实现高级特征指导低级特征复原空间信息,并输出初步预测结果。第二个子网络利用一个浅层U-Net对第一个子网络获得的初步预测结果进行细化并增强边缘检测能力。东北大学热轧带钢表面缺陷数据集上的实验证明了该方法对夹杂、斑点和划伤等表面缺陷自动提取的可行性和有效性。 展开更多
关键词 语义分割 表面缺陷检测 小样本学习 特征金字塔注意力 全局注意力上采样模块
在线阅读 下载PDF
GCANet:面向视觉物联网的标签文本检测方法
4
作者 孔二伟 窦泽亚 +2 位作者 张亚邦 贾运红 王满利 《高技术通讯》 2025年第10期1059-1068,共10页
针对复杂环境下含标签货物实时记录困难的问题,提出一种面向视觉物联网(visual Internet of Things,VIoT)的文本检测方法。在视觉物联网中设计并引入基于全局上下文注意力和坐标注意力的文本检测网络(text detection network based on g... 针对复杂环境下含标签货物实时记录困难的问题,提出一种面向视觉物联网(visual Internet of Things,VIoT)的文本检测方法。在视觉物联网中设计并引入基于全局上下文注意力和坐标注意力的文本检测网络(text detection network based on global context attention and coordinate attention,GCANet),首先提出一种改进型坐标注意力模块,通过水平和垂直2个并行的一维池化操作,避免了因二维全局池化造成的位置信息丢失;然后引入全局上下文注意力模块,避免在复杂的背景对文本检测的影响,并防止密集或较远间隔的文本被错误地检测。该系统中提出的GCANet在公共数据集ICDAR2015、MSRA-TD500和Total-Text上的综合指标F值分别达到87.4%、86.9%和86.3%。在工业标签数据集Label-Text上平均准确率、平均召回率和平均F值分别达到93.4%、90.9%和92.1%。此外,GCANet在矿井下的标签数据集Mine-Text上准确率、召回率和F值分别达到94.4%、84.9%和89.9%。实验结果表明,本文提出的面向视觉物联网的文本检测方法效果优异。 展开更多
关键词 视觉物联网 文本检测 坐标注意力模块 全局上下文注意力模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部