期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
SG-UNet:基于全局注意力和自校准卷积增强的黑色素瘤分割模型
1
作者 计寰宇 王蕊 +1 位作者 高盛祥 车文刚 《南方医科大学学报》 北大核心 2025年第6期1317-1326,共10页
目的 提出了一种新的黑色素瘤分割模型SG-UNet,以提高黑色素瘤皮肤镜图像的精确分割。通过分割后边界特征评估,可以更准确地识别诊断黑色素瘤从而辅助早期诊断。方法 使用一种U形结构的卷积神经网络UNet,对其主干、跳跃连接和下采样池... 目的 提出了一种新的黑色素瘤分割模型SG-UNet,以提高黑色素瘤皮肤镜图像的精确分割。通过分割后边界特征评估,可以更准确地识别诊断黑色素瘤从而辅助早期诊断。方法 使用一种U形结构的卷积神经网络UNet,对其主干、跳跃连接和下采样池化部分进行改进。在主干部分,我们将UNet的下采样部分参考Vgg的结构将卷积数量由10个增加到13个加深网络层次来捕获更加精细的特征表示。为了进一步提升特征提取和细节识别的能力,主干部分将传统的卷积替换为自校准卷积增强模型对空间维度和通道维度特征的捕获能力。同时,在池化部分将哈尔小波下采样替换原有的池化层实现更有效的多尺度特征融合,并降低特征图的空间分辨率。接着将全局注意力机制融入到每一层的跳跃连接中更好地理解图像的上下文信息。结果实验结果表明SG-UNet在ISIC 2017和ISIC 2018数据集上的分割效果对比目前其他先进分割模型得到明显提升。在ISIC2017和ISIC 2018数据集上Dice,IoU分别达到了92.41%,86.62%和92.31%,86.48%。结论 实验结果证实,所提出的方法能够有效实现黑色素瘤的精确分割。 展开更多
关键词 图像分割 全局注意力机制 黑色素瘤 UNet 自校准卷积 哈尔小波下采样 SG-UNet
在线阅读 下载PDF
多尺度融合增强与注意力机制结合的图像语义分割
2
作者 刘书刚 杜昊东 王洪涛 《计算机应用与软件》 北大核心 2025年第6期225-233,278,共10页
针对当前图像语义分割中分割效率不高与分割边界不连续问题,提出一种多尺度融合增强与注意力机制结合的语义分割算法。该算法对原有DeepLabv3+网络结构进行改进,在编码器部分提出一种特征提取增强网络结构,充分利用相邻层各个尺度的特... 针对当前图像语义分割中分割效率不高与分割边界不连续问题,提出一种多尺度融合增强与注意力机制结合的语义分割算法。该算法对原有DeepLabv3+网络结构进行改进,在编码器部分提出一种特征提取增强网络结构,充分利用相邻层各个尺度的特征信息进行融合,在解码器末端使用改进的轻量化卷积注意力模块,使得对于物体边界分割更加充分。通过在Pascal VOC2007和Cityscapes数据集上进行实验验证,结果表明该方法较原有网络的精确度有显著的提高。 展开更多
关键词 语义分割 特征融合增强 注意力模块 编码器 上采样
在线阅读 下载PDF
基于全局补偿注意力机制的战场图像去雾方法 被引量:1
3
作者 林森 王金刚 高宏伟 《兵工学报》 EI CAS CSCD 北大核心 2024年第4期1344-1353,共10页
在现代化战争中,广泛利用图像等载体获取信息,但雾天环境下得到的图像不仅影响场景呈现,而且会掩盖重要特征。为提高雾天图像在现代化战争的利用价值,提出一种基于全局补偿注意力机制的战场图像去雾方法。构建全局补偿模块保证输出图像... 在现代化战争中,广泛利用图像等载体获取信息,但雾天环境下得到的图像不仅影响场景呈现,而且会掩盖重要特征。为提高雾天图像在现代化战争的利用价值,提出一种基于全局补偿注意力机制的战场图像去雾方法。构建全局补偿模块保证输出图像的完整性,并加入通道下采样恢复清晰图像;使用密集残差模块学习退化图像和清晰图像的非线性映射,同时加入注意力机制提高网络的灵活处理能力;通过提升输入图像的通道数量确保网络充分学习特征信息。实验结果表明,与经典和新颖图像去雾方法比较,所提方法在主观和客观评价上均取得出色成绩,说明该方法将注意力机制和全局补偿模块充分结合,有效缓解了战场图像退化问题,同时注重特征增强,使信息得以完整呈现,具有更优越的性能。 展开更多
关键词 战场图像去雾 全局补偿 注意力机制 密集残差模块
在线阅读 下载PDF
引入全局上下文模块和高效注意力机制的车辆跟踪算法 被引量:5
4
作者 李畅 王一丁 +1 位作者 孙芮 何忠贺 《科学技术与工程》 北大核心 2022年第11期4424-4433,共10页
孪生全卷积神经网络目标跟踪算法(SiamFC)近些年成为车辆跟踪领域的研究热点。但该算法缺乏对目标车辆的深层特征提取和整体感知,在背景复杂、低分辨率、光照变化的情况下容易跟丢。提出使用深度残差网络ResNet50作为主干网络,根据跟踪... 孪生全卷积神经网络目标跟踪算法(SiamFC)近些年成为车辆跟踪领域的研究热点。但该算法缺乏对目标车辆的深层特征提取和整体感知,在背景复杂、低分辨率、光照变化的情况下容易跟丢。提出使用深度残差网络ResNet50作为主干网络,根据跟踪模型特性,从剪裁特征图、调整网络总步长和嵌入高效通道注意力模块三方面对其进行优化,高效提取特征的同时增强模型的差异化认知,并在分支网络引入全局上下文模块(non-local network,NLNet),增强跟踪模型对目标车辆的整体感知。经实验证明,提出的算法在低分辨率、光照变化和复杂背景的情况下跟踪速度和鲁棒性显著提升。在VOT2018和OTB2015数据集中测试均能得到较好的跟踪结果,与经典跟踪模型SiamFC相比,在OTB2015数据集中测试的跟踪精度提高了5.5%,跟踪成功率提高了2.7%,跟踪速度提高了14%可达98帧/s。 展开更多
关键词 孪生神经网络 车辆跟踪 高效注意力模块 全局上下文模块
在线阅读 下载PDF
融合动态场景感知和注意力机制的声学回声消除算法
5
作者 许春冬 黄乔月 +1 位作者 王磊 徐锦武 《信号处理》 CSCD 北大核心 2024年第2期396-405,共10页
在实时语音频通话系统中,如何去除声学回声得到清晰语音是目前最受关注的难题之一。声学回声消除(Acoustic echo cancellation,AEC)技术旨在消除语音频通话系统中的声学回声,提高通话过程中的语音质量,给予用户良好的通话体验,但是传统... 在实时语音频通话系统中,如何去除声学回声得到清晰语音是目前最受关注的难题之一。声学回声消除(Acoustic echo cancellation,AEC)技术旨在消除语音频通话系统中的声学回声,提高通话过程中的语音质量,给予用户良好的通话体验,但是传统回声消除系统存在去回声效果不明显、存在非线性回声残留以及无法实时处理回声等问题。因此,为解决上述存在问题,提出了一种动态场景感知模块(Dynamic scene perception module,DSPM)和全局注意力机制(Global attention mechanism,GAM)相结合的声学回声消除算法。该算法以卷积循环网络(Convolutional recurrent network,CRN)作为基线模型,提取语音信号的序列特征;首先,在其编码器中引入DSPM模块替换原因果卷积,根据场景动态分配卷积内核数量,加强模型的自适应性;其次,在编码器最后两层中分别引入GAM模块,放大空间通道间关系以及统筹全局交互,提升对语音信号特征的提取能力以及消除回声的性能;最后,通过将MSE损失函数和HuberLoss损失函数线性相加生成一种新的损失函数——MSE-HuberLoss,进一步提高模型的鲁棒性。实验结果表明,提出的GAM-DSPM-CRN模型的回声消除性能优秀,且获得较基线模型更加清晰的重构语音信号;在双端通话环境下,提出的GAM-DSPM-CRN模型声学回声消除算法较其他对比算法性能有较大提升;在Microsoft AEC Challenges数据集上,MOS、ERLE和STOI的得分分别达到了4.09、57.43和0.78。 展开更多
关键词 声学回声消除 动态场景感知模块 全局注意力机制 卷积循环网络 联合损失函数
在线阅读 下载PDF
基于Bert-GNNs异质图注意力网络的早期谣言检测 被引量:5
6
作者 欧阳祺 陈鸿昶 +2 位作者 刘树新 王凯 李星 《电子学报》 EI CAS CSCD 北大核心 2024年第1期311-323,共13页
网络谣言的广泛传播已经造成了很大的社会危害,因此早期谣言检测任务已成为重要的研究热点.现有谣言检测方法主要从文本内容、用户配置和传播结构中挖掘相关特征,但没有同时利用到文本全局语义关系和局部上下文语义关系.为了克服以上局... 网络谣言的广泛传播已经造成了很大的社会危害,因此早期谣言检测任务已成为重要的研究热点.现有谣言检测方法主要从文本内容、用户配置和传播结构中挖掘相关特征,但没有同时利用到文本全局语义关系和局部上下文语义关系.为了克服以上局限性,充分利用到谣言数据中的文本全局-局部上下文语义关系、文本语义内容特征和推文传播的结构特征,本文提出了一种基于Bert-GNNs异质图注意力网络的早期谣言检测算法(Bert-GNNs Heterogeneous Graph Attention Network,BGHGAN).该方法根据历史谣言集和用户特征构建一个推文-词-用户异质图,通过采用预训练语言模型Bert和图卷积神经网络(Graph Convolutional Network,GCN)结合的方法进行特征学习,以挖掘谣言的文本语义特征和文本之间的关系,并将异质图分解为推文-词子图和推文-用户子图,采用图注意力网络(Graph Attention network,GAT)的方式分别进行特征学习,从而更充分利用文本全局-局部上下文语义关系和传播图的全局结构关系以加强特征表达;最后,通过子图级注意力机制将不同模块的学习集成进行最终的谣言检测.所提算法在真实的Twitter15和Twitter16数据上进行实验,验证了该算法在检测准确率上分别为91.4%和91.9%,较现有最佳模型分别提高了1%和1.4%,也具备在早期阶段对谣言的检测能力;同时,本文通过实验探讨了不同特征对谣言检测的重要性、对异质图构建质量的重要性. 展开更多
关键词 虚假谣言 Bert-GCN模块 子图注意力网络模块 全局语义关系 全局结构关系 局部上下文语义关系
在线阅读 下载PDF
从全局到局部:双注意力融合去雾网络 被引量:2
7
作者 杨瑷玮 王华珂 侯兴松 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第7期191-200,共10页
为了处理现有的基于卷积神经网络去雾方法只使用单一的注意力、很难生成细节生动的清晰图像,且容易导致色彩失真的问题,提出了一个全局与局部注意力融合的图像去雾方法,以获得正常清晰度和无色彩失真的去雾图像。首先利用通道注意力将... 为了处理现有的基于卷积神经网络去雾方法只使用单一的注意力、很难生成细节生动的清晰图像,且容易导致色彩失真的问题,提出了一个全局与局部注意力融合的图像去雾方法,以获得正常清晰度和无色彩失真的去雾图像。首先利用通道注意力将输入的有雾图像在通道维度切分为两部分,一部分送入通道像素注意力通道抽取局部特征,另一部分送入Transformer通道学习全局特征,然后利用像素注意力对两个通道学习的特征进行融合,将上述模块作为基本单元组合为一个多级U型去雾网络,增加残差连接缓解上下采样导致的细节信息丢失,最后在网络底层加入一个Transformer模块学习全局信息。在多个公开可用的去雾图像数据集RESIDE SOTS Indoor、RESIDE SOTS Outdoor上测试所提方法的有效性,结果表明:对比经典的去雾方法,所提网络生成的图像细节更丰富并且色彩失真最少;在RESIDE SOTS Outdoor数据集上,相比经典的FFA-Net,峰值信噪比提高1.16 dB,相比GridDehazeNet,峰值信噪比提高3.68 dB。提出的全局与局部注意力融合方法能有效地去除雾霾,提升图像的对比度与清晰度,设计的多级U型去雾网络和残差连接结构能够缓解细节丢失,提升去雾效果,获得清晰的图像。 展开更多
关键词 图像去雾 全局与局部注意力融合 通道像素注意力 Transformer模块
在线阅读 下载PDF
并行注意力机制在图像语义分割中的应用 被引量:10
8
作者 张汉 张德祥 +2 位作者 陈鹏 章军 王兵 《计算机工程与应用》 CSCD 北大核心 2022年第9期151-160,共10页
在卷积神经网络中融入注意力机制越来越成为语义分割强化特征学习的重要方法。提出了一种融合了局部注意力和全局注意力的卷积神经网络。输入图像经主干网络的特征提取,并行输入给局部注意力和全局注意力模块。局部注意力模块以编码-解... 在卷积神经网络中融入注意力机制越来越成为语义分割强化特征学习的重要方法。提出了一种融合了局部注意力和全局注意力的卷积神经网络。输入图像经主干网络的特征提取,并行输入给局部注意力和全局注意力模块。局部注意力模块以编码-解码结构实现多尺寸的局部特征融合,全局注意力模块根据每个像素与其所在特征图上所有像素的相关性捕获全局信息。融合两个注意力模块不仅减少了局部信息的丢失,而且捕获了具有长距离依赖的全局信息,有效提升了特征提取的能力。采用一种数据相关的上采样方法代替双线性插值法恢复特征图至输入尺寸,同时改善了分割效果。采用Dice Loss损失函数并针对样本不平衡问题在类别损失前加入权重系数进一步改善了分割效果。该方法在药丸污点数据集、药丸缺损数据集以及走廊数据集上分别得到了96.39%、93.44%、96.28%的平均交并比结果。 展开更多
关键词 局部注意力 全局注意力 数据相关上采样 样本不平衡
在线阅读 下载PDF
基于DenseNet与注意力机制的遥感影像云检测算法 被引量:9
9
作者 刘广进 王光辉 +2 位作者 毕卫华 刘慧杰 杨化超 《自然资源遥感》 CSCD 北大核心 2022年第2期88-96,共9页
遥感影像云检测是遥感影像处理过程中的第一步,针对传统的云检测算法小块薄云检测效果差的问题,该文提出了一种融合注意力机制的密集连接网络遥感影像云检测方法。首先,将自然资源部国土卫星遥感应用中心提供的影像人工勾取云矢量并制... 遥感影像云检测是遥感影像处理过程中的第一步,针对传统的云检测算法小块薄云检测效果差的问题,该文提出了一种融合注意力机制的密集连接网络遥感影像云检测方法。首先,将自然资源部国土卫星遥感应用中心提供的影像人工勾取云矢量并制作云标签,再将其进行顺序裁剪、色彩抖动、旋转等预处理,以增广样本量;然后,将预处理过后的遥感影像及其标签一并输入到以DenseNet作为编码器与解码器的神经网络中,编码器与解码器之间加入级联的空洞卷积模块以增大感受野,双注意力机制与全局上下文建模模块以抑制一些无关的细节信息;最后,经过实验验证表明其精确率可以达到95%以上,交并比可以达到91%以上,较传统云检测算法有较大提高,可以很好地提取小块薄云。 展开更多
关键词 云检测 DenseNet 注意力机制 全局上下文建模模块 空洞卷积
在线阅读 下载PDF
基于Deeplab V3 Plus的自适应注意力机制图像分割算法 被引量:14
10
作者 杨贞 彭小宝 +1 位作者 朱强强 殷志坚 《计算机应用》 CSCD 北大核心 2022年第1期230-238,共9页
针对Deeplab V3 Plus在下采样操作中图像细节信息和小目标信息过早丢失的问题,提出了一种基于Deeplab V3 Plus网络架构的自适应注意力机制图像语义分割算法。首先,在Deeplab V3 Plus主干网络的输入层、中间层和输出层均嵌入注意力机制模... 针对Deeplab V3 Plus在下采样操作中图像细节信息和小目标信息过早丢失的问题,提出了一种基于Deeplab V3 Plus网络架构的自适应注意力机制图像语义分割算法。首先,在Deeplab V3 Plus主干网络的输入层、中间层和输出层均嵌入注意力机制模块,并且引入一个权重值与每个注意力机制模块相乘,以达到约束注意力机制模块的目的;其次,在PASCAL VOC2012公共分割数据集上训练嵌入注意力模块的Deeplab V3 Plus,以此手动获取注意力机制模块权重值(经验值);然后,探索输入层、中间层和输出层中注意力机制模块的多种融合方式;最后,将注意力机制模块的权重值更改为反向传播自动更新,从而得到注意力机制模块的最优权值和最优分割模型。实验结果表明,与原始Deeplab V3 Plus网络结构相比,引入自适应注意力机制的Deeplab V3 Plus网络结构在PASCAL VOC2012公共分割据集和植物虫害数据集上的平均交并比(MIOU)分别提高了1.4个百分点和0.7个百分点。 展开更多
关键词 语义分割 采样操作 自适应注意力机制 注意力机制模块权重值 DeeplabV3 Plus
在线阅读 下载PDF
基于暗区域引导的低照度图像增强 被引量:1
11
作者 汪婉灵 熊邦书 +2 位作者 欧巧凤 余磊 饶智博 《应用科学学报》 北大核心 2025年第2期245-256,共12页
针对现有增强方法在图像照度分布不均匀时出现的局部过度增强、颜色失真以及细节丢失问题,提出了一种结合暗区域引导与注意力机制的低照度图像增强方法。首先,采用简单线性迭代聚类方法生成暗区域引导图,指导网络在保障正常曝光区域不... 针对现有增强方法在图像照度分布不均匀时出现的局部过度增强、颜色失真以及细节丢失问题,提出了一种结合暗区域引导与注意力机制的低照度图像增强方法。首先,采用简单线性迭代聚类方法生成暗区域引导图,指导网络在保障正常曝光区域不过度增强的情况下,重点增强图像曝光不足区域;其次,设计通道注意力模块,提高网络对颜色信息的提取能力,更好地恢复图像颜色,保证颜色自然度;再次,设计全局上下文模块,增加网络全局感知能力,丰富图像细节信息;最后,增强网络融合输入特征和暗区域注意力网络输出特征,实现图像对比度再增强。在6个公共数据集上进行多组对比实验,分别从主观与客观两方面进行性能对比,结果表明所提方法能够有效解决低照度图像存在的颜色失真、细节丢失和曝光不均匀问题,具有较好的视觉增强效果与泛化性。 展开更多
关键词 低照度图像增强 暗区域引导 通道注意力模块 全局上下文模块 深度学习
在线阅读 下载PDF
双域多尺度特征提取的轨道面瑕疵检测算法
12
作者 胡贺南 都业辉 +2 位作者 李荣华 王大志 张然 《铁道科学与工程学报》 北大核心 2025年第9期4218-4233,共16页
轨道面瑕疵检测是保障铁路系统安全运行的关键技术。针对现有的轨道面瑕疵检测算法存在准确率低和漏检率高的问题,基于YOLOv5s框架,提出一种双域多尺度特征提取的轨道面瑕疵检测算法。首先,设计动态增强上采样模块,减少上采样过程中导... 轨道面瑕疵检测是保障铁路系统安全运行的关键技术。针对现有的轨道面瑕疵检测算法存在准确率低和漏检率高的问题,基于YOLOv5s框架,提出一种双域多尺度特征提取的轨道面瑕疵检测算法。首先,设计动态增强上采样模块,减少上采样过程中导致的分辨率损失和伪影现象,提升对轨道面瑕疵细粒度特征的获取能力;其次,提出自协同卷积块注意力,结合自注意力机制和卷积块注意力机制的优势,在捕获轨道面瑕疵全局上下文信息的同时,抑制无用背景信息的干扰;随后,采用全维动态卷积替换主干网络中的标准卷积,动态调整卷积核参数,实现对轨道面瑕疵的多尺度特征提取;最后,构建小波变换金字塔模块,通过Haar小波分解,联合提取瑕疵的空间域和频域特征,增强全局形状建模与细节表达能力。实验结果表明,各改进策略均有效提升了模型的检测性能。在自建的轨道面瑕疵数据集上,改进算法的平均精度mAP_(50)和mAP_(50-95)分别达到84.4%和53.3%,GFLOPs为13.8G,相比于YOLOv5s,平均精度mAP50和mAP_(50-95)分别提升4.6个百分点和6.7个百分点,GFLOPs降低13.8%。与Faster R-CNN、RT-DETR、SSD、YOLOv7等主流目标检测算法以及其他轨道面瑕疵检测算法相比,改进算法具有更高的检测精度,同时在公开的轨道面瑕疵数据集上展现出良好的泛化能力,证明了其在轨道面瑕疵检测领域的有效性。 展开更多
关键词 轨道面瑕疵检测 上采样模块 注意力机制 全维动态卷积 小波变换
在线阅读 下载PDF
双通道噪声抑制网络及在阴影去除中的应用
13
作者 黄璞 苏畅 +1 位作者 杨章静 杨国为 《小型微型计算机系统》 北大核心 2025年第10期2431-2439,共9页
针对图像中阴影覆盖导致信息缺失的问题,提出了一种基于Transformer的阴影去除方法——双通道噪声抑制网络(DNSNet).该方法在Transformer的基础上集成了全局双通道注意力模块,结合通道注意力和空间注意力机制,以捕获全面的全局上下文信... 针对图像中阴影覆盖导致信息缺失的问题,提出了一种基于Transformer的阴影去除方法——双通道噪声抑制网络(DNSNet).该方法在Transformer的基础上集成了全局双通道注意力模块,结合通道注意力和空间注意力机制,以捕获全面的全局上下文信息,从而实现精确的阴影去除,显著提升了阴影区域的清晰度和准确性.在阴影处理阶段,DNSNet进一步引入了噪声抑制注意力聚合模块,有针对性地突出关键特征,从而有效改善了阴影区域的处理效果.在ISTD、ISTD+和SRD数据集上的实验结果表明,DNSNet在阴影去除任务中,相较于现有方法,表现优异,不仅有效减少了阴影对图像质量的影响,还成功保留了图像的关键细节和自然纹理. 展开更多
关键词 阴影去除 TRANSFORMER 多尺度混合注意力框架 噪声抑制注意力聚合模块 全局双通道
在线阅读 下载PDF
基于知识图谱的红外目标部件识别
14
作者 刘海毅 李正周 +1 位作者 李傲燃 刘海涛 《光学精密工程》 北大核心 2025年第9期1446-1455,共10页
针对目标自遮挡、视觉特征不明显、特征变化大等导致部件识别准确性降低难题,提出一种基于知识图谱的红外目标部件识别方法。采用先识别目标整体,再识别目标部件的两阶段识别策略。首先检测目标整体,将目标区域扩展到高分辨率增强信号... 针对目标自遮挡、视觉特征不明显、特征变化大等导致部件识别准确性降低难题,提出一种基于知识图谱的红外目标部件识别方法。采用先识别目标整体,再识别目标部件的两阶段识别策略。首先检测目标整体,将目标区域扩展到高分辨率增强信号细节信息,提升目标识别能力;然后,部件识别模型融入目标知识图谱,利用目标部件结构关系推理部件同现关系,融合部件关联性注意力提升部件识别性能,解决由于视觉特征不足带来的部件识别难题;针对部件自遮挡,提出基于自遮挡的学习率控制策略,增强模型对遮挡的学习性能和收敛性。最后,搭建了室内目标等效缩比模型验证系统,对在不同姿态与距离条件下的飞机进行测试,识别平均精度达到92.2%。实验结果表明,所提方法识别目标部件能力更佳,显著提升了精度和召回率。 展开更多
关键词 红外目标识别 知识图谱 整体识别 全局向量模型 注意力模块 学习率控制
在线阅读 下载PDF
基于TA-UNet3+的高分辨率遥感图像地表水体提取
15
作者 白倩 罗小波 母仕林 《计算机工程与应用》 北大核心 2025年第13期245-255,共11页
遥感图像中准确提取地表水体信息对于水资源管理、环境监测等领域至关重要。然而,由于地表覆盖的多样性、水体与周围环境的交汇、植被的复杂遮挡等因素,使得这项任务仍然面临着一系列挑战。为了提高地表水体提取精度,基于U-Net3+网络进... 遥感图像中准确提取地表水体信息对于水资源管理、环境监测等领域至关重要。然而,由于地表覆盖的多样性、水体与周围环境的交汇、植被的复杂遮挡等因素,使得这项任务仍然面临着一系列挑战。为了提高地表水体提取精度,基于U-Net3+网络进行优化,提出了一种适用于高分辨率遥感图像的TA-UNet3+网络模型。在编码器端由深度特征到浅层逐层引入窗口注意力嵌入模块,将来自更深层特征的局部注意力逐步嵌入到较低级特征中,提高特征图的语义理解能力。引入了结合阈值注意力和深度可分离的TA-ASPP模块,有效提高了特征信息的提取效率。在解码器端修改了多尺度融合模块,采用可学习的密集上采样卷积和深度分离卷积替代原始的双线性插值与普通卷积,在保证精度的同时显著降低了计算复杂度。数据集选择了重庆市不同场景下的部分地区,实验结果表明,TA-UNet3+网络模型在精度、召回率、F1和IoU等评价指标上均优于语义分割网络,表现出更高的地表水体提取精度。 展开更多
关键词 地表水体提取 遥感图像 TA-UNet3+ 阈值注意力 密集上采样卷积 TA-ASPP模块 窗口注意力
在线阅读 下载PDF
面向视障人群的室内视觉辅助算法的研究
16
作者 欧阳玉旋 张荣芬 +1 位作者 刘宇红 彭垚潘 《激光技术》 北大核心 2025年第2期166-174,共9页
为了解决现有室内视觉辅助算法检测性能低、模型参数量大、不易部署于边缘设备等问题,对你只看一次(YOLO)网络YOLOv7-tiny进行改进,提出一种新的YOLOv7-ghost网络模型。针对模型参数量大的问题,引入幽灵瓶颈(GB)代替部分池化操作和高效... 为了解决现有室内视觉辅助算法检测性能低、模型参数量大、不易部署于边缘设备等问题,对你只看一次(YOLO)网络YOLOv7-tiny进行改进,提出一种新的YOLOv7-ghost网络模型。针对模型参数量大的问题,引入幽灵瓶颈(GB)代替部分池化操作和高效层聚合网络(ELAN),大幅度降低模型参数量;构建了一个全新的高性能轻量化模块(即C2f-全局注意力模块),综合考虑全局和局部特征信息,更好地捕捉节点的上下文信息;然后引入快速空间金字塔池化和幽灵瓶颈(SPPF-GB)模块,对特征进行重组和压缩,以融合不同尺度的特征信息、增强特征的表达能力;最后在头部引入可变形卷积(DCN),增强感受野的表达能力,以捕获目标周围更细粒度的目标结构和背景信息。结果表明,改进后的模型参数量下降了20.33%,模型大小下降了18.70%,平均精度mAP@0.50和mAP@0.50~0.95分别提升了1.2%和3.3%。该网络模型在保证轻量化的同时,检测精度得到了大幅度的提升,更利于室内场景目标检测算法实际应用的部署。 展开更多
关键词 图像处理 轻量化 幽灵瓶颈模块 C2f-全局注意力模块 多尺度特征融合 可变形卷积 YOLOv7-tiny网络模型
在线阅读 下载PDF
基于改进YOLOv7-tiny的绝缘子缺陷检测网络
17
作者 韩兴宇 陈为真 《现代电子技术》 北大核心 2025年第16期105-112,共8页
现有的检测方法在复杂背景的输电线路图像中识别绝缘子微小缺陷时,得到的图像存在背景环境复杂、缺陷尺寸小等问题。为保证输电线路的安全运行,提出一种基于YOLOv7-tiny的绝缘子缺陷检测网络(IDD-Net)。首先,引入基于注意力的尺度内特... 现有的检测方法在复杂背景的输电线路图像中识别绝缘子微小缺陷时,得到的图像存在背景环境复杂、缺陷尺寸小等问题。为保证输电线路的安全运行,提出一种基于YOLOv7-tiny的绝缘子缺陷检测网络(IDD-Net)。首先,引入基于注意力的尺度内特征交互(AIFI)来处理高维特征,从而降低计算量;其次,使用双向加权路径特征金字塔网络(BiFPN)进行特征融合,并对下采样模块进行改进,增强网络的感知能力;最后,使用Focal-DIoU损失函数提高锚框质量。结果表明,与基线模型相比,IDD-Net的平均精度均值提高4.1%,精确率和召回率分别提高2.4%和6.5%,参数量和浮点运算量分别减少5.8%和2.3%,对于闪络缺陷的平均精度提高11.2%。由此说明所提方法参数量较小,性能更优异,鲁棒性更强。 展开更多
关键词 YOLOv7-tiny 绝缘子缺陷检测 基于注意力的尺度内特征交互 双向加权路径特征金字塔网络 MC下采样模块 轻量级网络
在线阅读 下载PDF
基于改进YOLOv5s的马脸识别方法研究
18
作者 张立娟 唐开婷 《智慧农业导刊》 2025年第11期18-21,25,共5页
为实现马匹身份快速识别,该文以自建数据集为研究对象,提出一种基于YOLOv5s的轻量化检测算法。首先该算法将YOLOv5s的主干网络替换成轻量级神经网络MobileNetv3。其次在头部网络C3模块分别添加NAM、ParNet、Triplet注意力模块。最后将... 为实现马匹身份快速识别,该文以自建数据集为研究对象,提出一种基于YOLOv5s的轻量化检测算法。首先该算法将YOLOv5s的主干网络替换成轻量级神经网络MobileNetv3。其次在头部网络C3模块分别添加NAM、ParNet、Triplet注意力模块。最后将最邻近插值上采样方式替换成转置卷积上采样方式。最优模型(YOLOv5s+v3+Triplet+ConvTranspose2d)平均精度均值为99.5%,准确率为97.2%,召回率为98.9%,模型体积10.9 MB,相较于基础的YOLOv5s模型准确率提高0.5%,召回率提高0.2%,模型体积减小3.9 MB。改进模型在大幅减少模型大小的同时使模型性能保持在一个较高的水平,为畜牧养殖数字化和智能化提供方法参考,具有较高的应用价值。 展开更多
关键词 马脸识别 YOLOv5s MobileNetv3 注意力模块 转置卷积上采样
在线阅读 下载PDF
结合全局语义优化的对抗性灰度图像彩色化 被引量:6
19
作者 万园园 王雨青 +2 位作者 张晓宁 李荅群 陈小林 《液晶与显示》 CAS CSCD 北大核心 2021年第9期1305-1313,共9页
针对当前灰度图像彩色化算法容易出现色彩枯燥、颜色溢出和图像细节损失等问题,本文提出一种结合全局语义优化的对抗性灰度图像彩色化算法。其中,生成网络采用自主改进的U-Net网络。一方面,改进的U-Net网络利用多层卷积对输入图像进行... 针对当前灰度图像彩色化算法容易出现色彩枯燥、颜色溢出和图像细节损失等问题,本文提出一种结合全局语义优化的对抗性灰度图像彩色化算法。其中,生成网络采用自主改进的U-Net网络。一方面,改进的U-Net网络利用多层卷积对输入图像进行逐步下采样,在获取多尺度层级特征和全局特征的同时,在跳跃连接中将全局特征和多尺度层级特征进行自适应融合,从而有效增强算法对全局语义信息的理解能力并缓解颜色溢出的现象;另一方面,改进的U-Net网络在上采样过程中融合通道注意力模块,使得在提取卷积特征时能够有效抑制噪声并降低特征冗余性。判别网络主要采用全卷积结构,通过反向传播误差以达到优化生成网络的目的。此外,本文算法的损失函数将WGAN-GP网络的优化思想和颜色损失相结合,从而解决传统生成对抗网络训练时出现的梯度消失和模式崩溃等问题。本文算法在Place365测试集上所获取的峰值信噪比、结构相似性和信息熵指标分别为24.455 dB、0.943和7.489。实验结果表明,本文算法能够缓解颜色溢出,且细节保持和颜色饱和度方面都具有一定优势。 展开更多
关键词 全局特征 通道注意力模块 WGAN-GP 图像彩色化
在线阅读 下载PDF
融合Inception V1-CBAM-CNN的轴承剩余寿命预测模型 被引量:8
20
作者 余江鸿 彭雄露 +2 位作者 刘涛 杨文 叶帅 《机电工程》 北大核心 2024年第1期107-114,共8页
针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了... 针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了加权处理,在通道和空间维度对重要特征进行了强化,对次要特征进行了抑制,通过添加改进的InceptionV1模块,提高了CNN通道间信息交互水平,全面提取了退化特征;然后,进行了网络优化,采用全局最大池化(GMP)方法对模型进行了简化,采用Dropout和批量归一化(BN)方法,避免了过拟合,提高了精度,且克服了训练时出现的梯度消失问题;最后,对数据进行了处理,将降噪后的信号重组为三维张量,将其作为HI,构建了退化标签,引入了评价指标,采用PHM2012轴承数据集进行了实验验证,在3种工况下将其与深度神经网络(DNN)、CNN方法、结合注意力机制的残差网络方法(ResNet)进行了对比。研究结果表明:该方法在变负载条件下的平均RMSE为0.033,较其他方法的RMSE值分别降低了86%、78%和69%,在预测精度和泛化能力方面具有明显优势。 展开更多
关键词 滚动轴承 剩余使用寿命 Inception V1模块 卷积注意力机制模块 卷积神经网络 全局最大池化 批量归一化
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部