期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于定期竞争学习的多目标粒子群优化算法 被引量:13
1
作者 刘明 董明刚 敬超 《计算机应用》 CSCD 北大核心 2019年第2期330-335,共6页
为提高种群的多样性和算法的收敛性,提出一种基于定期竞争学习机制的多目标粒子群算法。该算法将多目标粒子群算法和竞争学习机制相结合,即每隔一定迭代代数便使用一次竞争学习机制,很好地保持了种群的多样性;同时,该算法不需要全局最... 为提高种群的多样性和算法的收敛性,提出一种基于定期竞争学习机制的多目标粒子群算法。该算法将多目标粒子群算法和竞争学习机制相结合,即每隔一定迭代代数便使用一次竞争学习机制,很好地保持了种群的多样性;同时,该算法不需要全局最优粒子的外部存档,而是从当前代种群中选取一部分优秀的粒子,再从这些优秀的粒子中随机选取一个作为全局最优粒子,能够有效提升算法的收敛性。将提出的算法与基于分解的多目标粒子群算法(MPSOD)、基于竞争机制且快速收敛的多目标粒子群(CMOPSO)算法、参考向量引导的多目标进化算法(RVEA)等8个算法在21个标准测试函数上进行了比较,结果表明,所提算法的帕累托(Pareto)前沿更加均匀,在世代距离(IGD)上会更加小。 展开更多
关键词 多目标 粒子群 定期竞争 竞争学习机制 全局最优选取策略
在线阅读 下载PDF
基于博弈机制的多目标粒子群优化算法 被引量:9
2
作者 喻金平 王伟 +1 位作者 巫光福 梁文 《计算机工程与设计》 北大核心 2020年第4期964-971,共8页
为改善多目标粒子群算法存在优化解的多样性不足和算法的收敛性问题,提出一种基于博弈机制的多目标粒子群优化算法。使用博弈机制,无需外部储备集,通过非占优排序和拥挤距离选出一部分优秀的粒子,从这些优秀的粒子中随机选择一个作为全... 为改善多目标粒子群算法存在优化解的多样性不足和算法的收敛性问题,提出一种基于博弈机制的多目标粒子群优化算法。使用博弈机制,无需外部储备集,通过非占优排序和拥挤距离选出一部分优秀的粒子,从这些优秀的粒子中随机选择一个作为全局最优粒子,有效提升算法的收敛性和种群的多样性。算法初期使用多尺度混沌变异策略,避免算法陷入局部最优。通过与6个多目标算法在3个系列标准测试函数上进行比较,验证了该算法所得解分布性较好,能快速收敛到真实Pareto前端。 展开更多
关键词 多目标 粒子群 混沌变异 博弈机制 全局最优选取策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部