针对点云配准过程中点云数据冗余、易出现误匹配点对和配准精度低的问题,提出了一种融合超体素及几何特征的点云配准方法。首先使用超体素与法向量信息相结合的方法提取特征点;其次,在粗配准中,通过使用快速特征点直方图(Fast Point Fea...针对点云配准过程中点云数据冗余、易出现误匹配点对和配准精度低的问题,提出了一种融合超体素及几何特征的点云配准方法。首先使用超体素与法向量信息相结合的方法提取特征点;其次,在粗配准中,通过使用快速特征点直方图(Fast Point Feature Histograms,FPFH)进行特征描述,采用双向最近邻比获取初始特征点对应关系,基于法向量夹角策略和随机采样一致性(Random Sample Consensus,RANSAC)算法进行对应关系的优化,获取良好的初始位姿;最后,在精配准中,基于初始位姿与改进的迭代最近点算法(Iterative Closest Point,ICP)算法完成点云配准。通过在斯坦福数据集中进行配准实验,验证了所提算法具有更好的鲁棒性,能高效且精准的完成点云配准。展开更多
针对工业场景下经典迭代最近点(iterative closest point,ICP)算法在点云位姿估计中初始位姿敏感度高、迭代时间长的问题,提出一种基于RGB图像的快速点云配准方法。分别采集RGB图像和点云数据,使用ORB(oriented FAST and rotated BRIEF...针对工业场景下经典迭代最近点(iterative closest point,ICP)算法在点云位姿估计中初始位姿敏感度高、迭代时间长的问题,提出一种基于RGB图像的快速点云配准方法。分别采集RGB图像和点云数据,使用ORB(oriented FAST and rotated BRIEF)算法提取RGB图像特征点,利用Brute-Force算法进行初始匹配,采用随机采样一致性算法优化匹配,得到单应矩阵和旋转平移矩阵,求解汽车零配件初始位姿。进一步采用主成分分析法和双向KD树近邻搜索算法对预处理后的点云数据进行精确配准。实验结果表明,所提算法相较ICP算法,在配准速度和精度上分别提高了87.2%和5.0%,相对于FR-ICP(fast and robust iterative closest point)算法,在配准精度相当的情况下,配准速度提高了55%。展开更多
点云配准是基于机器视觉进行工业复杂零件三维非接触精密测量的关键环节。为了提高点云配准的效率和准确性,提出一种基于改进法线计算的快速点特征直方图(Fast Point Feature Histograms, FPFH)特征描述子的点云配准方法。采用重心最近...点云配准是基于机器视觉进行工业复杂零件三维非接触精密测量的关键环节。为了提高点云配准的效率和准确性,提出一种基于改进法线计算的快速点特征直方图(Fast Point Feature Histograms, FPFH)特征描述子的点云配准方法。采用重心最近邻体素滤波器对点云进行预处理,减少点的数量同时保留表面细微特征。为解决传统迭代最近点(Iterative Closest Point, ICP)算法对初始位置敏感且收敛速度慢的问题,采用基于改进特征描述子的采样一致性(Sample Consensus Initial Alignment, SAC-IA)初始配准算法进行粗配准,使用基于KDtree加速的ICP算法进行精配准。本文选用三组点云数据,用不同的点云配准方法进行了测试。实验结果显示,在点云添加2%与5%噪声的情况下处理不同规模的点云数据时,所提出的方法配准所用时间和均方根误差(Root Mean Square Error, RMSE,ERMS)仍优于其它两种对比方法。展开更多
文摘三维点云数据配准在机器人环境感知与建模、虚拟现实、人机交互、逆向工程等领域有着广阔的应用前景。针对传统迭代最近点(Iterative Closest Point,ICP)算法中存在的收敛速度慢、鲁棒性差等问题进行研究,提出了一种融合采样一致性和迭代最近点算法的点云配准方法,对点云数据的快速点特征直方图(Fast Point Features Histograms,FPFH)特征进行提取并对这些特征使用采样一致性初始配准算法(Sample Consensus Initial Alignment,SAC-IA)进而得到点云集间的对应关系,计算出点云的初始变换,从而获得一个较好的配准位置,提出了k-d树近邻搜索方法加速搜寻对应点对,并利用点云的方向向量阈值去除迭代最近点算法产生的误点对,实现点云的精确配准。实验结果表明,算法取得了较高的配准精度,加快了收敛速度。
文摘针对工业场景下经典迭代最近点(iterative closest point,ICP)算法在点云位姿估计中初始位姿敏感度高、迭代时间长的问题,提出一种基于RGB图像的快速点云配准方法。分别采集RGB图像和点云数据,使用ORB(oriented FAST and rotated BRIEF)算法提取RGB图像特征点,利用Brute-Force算法进行初始匹配,采用随机采样一致性算法优化匹配,得到单应矩阵和旋转平移矩阵,求解汽车零配件初始位姿。进一步采用主成分分析法和双向KD树近邻搜索算法对预处理后的点云数据进行精确配准。实验结果表明,所提算法相较ICP算法,在配准速度和精度上分别提高了87.2%和5.0%,相对于FR-ICP(fast and robust iterative closest point)算法,在配准精度相当的情况下,配准速度提高了55%。