现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个...现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个小块,分别计算这些小块的注意力得分,增强对局部信息的感知能力。使用一组空洞卷积计算整个特征图的得分,获得全局多尺度信息的权衡。实验中,将PGMA集成到U-Net、DeepLab、SegNet等语义分割网络中,有效提升了它们的分割性能。这表明PGMA在增强CNN性能方面优于当前主流方法。展开更多
为了研究考虑高海拔多环境因素影响下输电线路可听噪声的预测问题,在海拔2400 m高度点的500 kV同塔双回线路下,搭建了边相外20、30、35 m三处可听噪声观测站,同时利用气象站进行多环境因素指标的数据采集。文中提出了一种基于多头注意...为了研究考虑高海拔多环境因素影响下输电线路可听噪声的预测问题,在海拔2400 m高度点的500 kV同塔双回线路下,搭建了边相外20、30、35 m三处可听噪声观测站,同时利用气象站进行多环境因素指标的数据采集。文中提出了一种基于多头注意力机制(multi⁃head attention,MHA)的卷积神经网络(convolutional neural network,CNN)—双向长短期记忆网络(bi⁃directional long short term memory,BiLSTM)模型进行可听噪声预测。首先,采用皮尔逊相关性分析对多种环境因素数据进行相关程度计算比较与剔除;然后,为充分挖掘可听噪声数据中的时序特征,使用CNN对多环境因素数据进行特征提取;再将提取的特征向量输入到BiLSTM中进行训练,并通过在BiLSTM端引入多头注意力机制,使模型学习权重更高的数据特征,从而提升模型预测精度;结果表明,该方法构建的组合模型可以提升考虑多因素特征可听噪声数据的预测精度,且具有较好的泛化性。展开更多
文摘现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个小块,分别计算这些小块的注意力得分,增强对局部信息的感知能力。使用一组空洞卷积计算整个特征图的得分,获得全局多尺度信息的权衡。实验中,将PGMA集成到U-Net、DeepLab、SegNet等语义分割网络中,有效提升了它们的分割性能。这表明PGMA在增强CNN性能方面优于当前主流方法。
文摘为了研究考虑高海拔多环境因素影响下输电线路可听噪声的预测问题,在海拔2400 m高度点的500 kV同塔双回线路下,搭建了边相外20、30、35 m三处可听噪声观测站,同时利用气象站进行多环境因素指标的数据采集。文中提出了一种基于多头注意力机制(multi⁃head attention,MHA)的卷积神经网络(convolutional neural network,CNN)—双向长短期记忆网络(bi⁃directional long short term memory,BiLSTM)模型进行可听噪声预测。首先,采用皮尔逊相关性分析对多种环境因素数据进行相关程度计算比较与剔除;然后,为充分挖掘可听噪声数据中的时序特征,使用CNN对多环境因素数据进行特征提取;再将提取的特征向量输入到BiLSTM中进行训练,并通过在BiLSTM端引入多头注意力机制,使模型学习权重更高的数据特征,从而提升模型预测精度;结果表明,该方法构建的组合模型可以提升考虑多因素特征可听噪声数据的预测精度,且具有较好的泛化性。
文摘针对盾构姿态预测模型存在易过拟合、预测精度低的问题,提出一种基于融合注意力机制的盾构姿态组合预测模型。为强化有效特征的提取,抑制冗余特征信息的表达,引入基于选择性卷积核网络(selective kernel networks,SKNet)的特征注意力机制提取网络,消除固定尺寸卷积核带来的限制,并自适应形成带有注意力的特征映射。为更好地捕捉长期信息和特征模式,通过双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)、门控循环单元(gated recurrent unit, GRU)得到2组隐含输出结果,再利用多头注意力机制,捕获组合模型输出的隐含特征与模型输出的盾构姿态之间的依赖关系,进一步提高预测模型对重要隐含特征的信息抓捕能力;同时,为解决地质勘察钻孔数据连续性差、精确性不足,难以应用于机器学习模型训练的问题,将基于人工先验知识的二级特征引入模型特征输入,提升模型对地层信息的感知能力。最后,基于广州地铁12号线官洲站—大学城北站盾构实例,对模型不同参数结构下的性能进行研究,并进行对比试验验证模型性能,采用可解释性试验评估特征对预测结果的影响。试验结果表明,相比其他预测模型,所提出的预测模型优越性更好,预测精度更高,解决了长时间序列高特征维度数据在传统模型下易过拟合且预测精度较低的问题。