最近,利用步态对个人身份进行识别受到越来越多生物识别技术研究者的重视。步态能量图(GEI-Gait Energy Image)是一种有效的步态表征方法,局部二值模式(LBP-Local Binary Pattern)能很好地提取局部信息,所以利用局部二值模式(LBP)来提...最近,利用步态对个人身份进行识别受到越来越多生物识别技术研究者的重视。步态能量图(GEI-Gait Energy Image)是一种有效的步态表征方法,局部二值模式(LBP-Local Binary Pattern)能很好地提取局部信息,所以利用局部二值模式(LBP)来提取步态能量图(GEI)的局部特征并用于识别。首先,为了更好地提取局部信息,把步态能量图(GEI)分块,提取各个子块上的LBP特征,然后把各子块在特征层进行融合,得到整个步态能量图(GEI)的特征表达;同时为了更好地挖掘步态能量图(GEI)的信息,对LBP模式进行了扩展。由于得到的LBP特征维数较高,利用具有降维和良好识别能力的辨识共同向量(DCV-Discriminant Common Vector)对步态能量图的LBP特征进行维数约减并增加类间距离。最后,只需利用简单的最近邻分类器就能取得较好的识别效果。将该算法在CASIA数据库上进行了试验,并取得了较高的正确识别率。展开更多
利用步态对个人身份进行识别已经受到越来越多生物识别技术研究者的重视。步态能量图(GEI-Gait Energy Image)是一种有效的步态表征方法,Gabor小波能提取不同方向、不同尺度空间频率特征,因此,首先利用Gabor小波提取步态能量图不同方向...利用步态对个人身份进行识别已经受到越来越多生物识别技术研究者的重视。步态能量图(GEI-Gait Energy Image)是一种有效的步态表征方法,Gabor小波能提取不同方向、不同尺度空间频率特征,因此,首先利用Gabor小波提取步态能量图不同方向、不同尺度的信息,得到其幅值谱图,再利用LBP来提取Gabor幅值谱图的局部信息,相对于LBP直接作用于步态能量图,能提取步态能量图更多方向、更多尺度的局部特征。最后,利用具有良好降维和辨识能力的辨识共同向量(DCV-Discriminant Common Vector)对提取的LBP特征进行维数约减和特征选择,只需利用简单的最近邻分类器就能取得较好的识别效果。该算法在中科院自动化所的CASIA数据库上面进行试验取得了较高的正确识别率。还针对步态识别中的小样本问题提出了一种样本扩充方法,解决了步态识别中的小样本问题,并提高了算法的识别率。展开更多
为研究信号相关性在语音情感识别中的作用,提出了一种面向语音情感识别的语谱图特征提取算法.首先,对语谱图进行处理,得到归一化后的语谱图灰度图像;然后,计算不同尺度、不同方向的Gabor图谱,并采用局部二值模式提取Gabor图谱的纹理特征...为研究信号相关性在语音情感识别中的作用,提出了一种面向语音情感识别的语谱图特征提取算法.首先,对语谱图进行处理,得到归一化后的语谱图灰度图像;然后,计算不同尺度、不同方向的Gabor图谱,并采用局部二值模式提取Gabor图谱的纹理特征;最后,将不同尺度、不同方向Gabor图谱提取到的局部二值模式特征进行级联,作为一种新的语音情感特征进行情感识别.柏林库(EMO-DB)及FAU Ai Bo库上的实验结果表明:与已有的韵律、频域、音质特征相比,所提特征的识别率提升3%以上;与声学特征融合后,所提特征的识别率较早期声学特征至少提高5%.因此,利用这种新的语音情感特征可以有效识别不同种类的情感语音.展开更多
针对在各种环境下声音事件的识别问题,提出了一种基于谱图纹理特征的声音事件识别方法。首先,将声音信号通过伽马通(Gammatone)滤波器组,使原始声音样本转化为灰度耳蜗谱图;然后,对谱图进行曲波(Curvelet)变换,得到不同尺度、不同方向的...针对在各种环境下声音事件的识别问题,提出了一种基于谱图纹理特征的声音事件识别方法。首先,将声音信号通过伽马通(Gammatone)滤波器组,使原始声音样本转化为灰度耳蜗谱图;然后,对谱图进行曲波(Curvelet)变换,得到不同尺度、不同方向的Curvelet子带;再采用改进完全局部二值模式(Improved Completed Local Binary Pattern,ICLBP)提取Curvelet子带的纹理特征,并生成分块统计直方图,将统计直方图级联作为一种新的声音事件特征;最后,使用支持向量机作为分类器对16种声音事件在不同噪声和不同信噪比下进行识别。实验结果表明,所提特征与其他声音特征相比,可以有效识别各种噪声环境下不同种类的声音事件。展开更多
文摘最近,利用步态对个人身份进行识别受到越来越多生物识别技术研究者的重视。步态能量图(GEI-Gait Energy Image)是一种有效的步态表征方法,局部二值模式(LBP-Local Binary Pattern)能很好地提取局部信息,所以利用局部二值模式(LBP)来提取步态能量图(GEI)的局部特征并用于识别。首先,为了更好地提取局部信息,把步态能量图(GEI)分块,提取各个子块上的LBP特征,然后把各子块在特征层进行融合,得到整个步态能量图(GEI)的特征表达;同时为了更好地挖掘步态能量图(GEI)的信息,对LBP模式进行了扩展。由于得到的LBP特征维数较高,利用具有降维和良好识别能力的辨识共同向量(DCV-Discriminant Common Vector)对步态能量图的LBP特征进行维数约减并增加类间距离。最后,只需利用简单的最近邻分类器就能取得较好的识别效果。将该算法在CASIA数据库上进行了试验,并取得了较高的正确识别率。
文摘利用步态对个人身份进行识别已经受到越来越多生物识别技术研究者的重视。步态能量图(GEI-Gait Energy Image)是一种有效的步态表征方法,Gabor小波能提取不同方向、不同尺度空间频率特征,因此,首先利用Gabor小波提取步态能量图不同方向、不同尺度的信息,得到其幅值谱图,再利用LBP来提取Gabor幅值谱图的局部信息,相对于LBP直接作用于步态能量图,能提取步态能量图更多方向、更多尺度的局部特征。最后,利用具有良好降维和辨识能力的辨识共同向量(DCV-Discriminant Common Vector)对提取的LBP特征进行维数约减和特征选择,只需利用简单的最近邻分类器就能取得较好的识别效果。该算法在中科院自动化所的CASIA数据库上面进行试验取得了较高的正确识别率。还针对步态识别中的小样本问题提出了一种样本扩充方法,解决了步态识别中的小样本问题,并提高了算法的识别率。
文摘为研究信号相关性在语音情感识别中的作用,提出了一种面向语音情感识别的语谱图特征提取算法.首先,对语谱图进行处理,得到归一化后的语谱图灰度图像;然后,计算不同尺度、不同方向的Gabor图谱,并采用局部二值模式提取Gabor图谱的纹理特征;最后,将不同尺度、不同方向Gabor图谱提取到的局部二值模式特征进行级联,作为一种新的语音情感特征进行情感识别.柏林库(EMO-DB)及FAU Ai Bo库上的实验结果表明:与已有的韵律、频域、音质特征相比,所提特征的识别率提升3%以上;与声学特征融合后,所提特征的识别率较早期声学特征至少提高5%.因此,利用这种新的语音情感特征可以有效识别不同种类的情感语音.
文摘针对在各种环境下声音事件的识别问题,提出了一种基于谱图纹理特征的声音事件识别方法。首先,将声音信号通过伽马通(Gammatone)滤波器组,使原始声音样本转化为灰度耳蜗谱图;然后,对谱图进行曲波(Curvelet)变换,得到不同尺度、不同方向的Curvelet子带;再采用改进完全局部二值模式(Improved Completed Local Binary Pattern,ICLBP)提取Curvelet子带的纹理特征,并生成分块统计直方图,将统计直方图级联作为一种新的声音事件特征;最后,使用支持向量机作为分类器对16种声音事件在不同噪声和不同信噪比下进行识别。实验结果表明,所提特征与其他声音特征相比,可以有效识别各种噪声环境下不同种类的声音事件。