期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
一个基于分枝搜索的函数全局优化方法 被引量:2
1
作者 柳常青 张钹 《计算机学报》 EI CSCD 北大核心 1997年第11期1009-1017,共9页
本文给出了算法性能的一种度量,并且提出了一种全局优化算法策略,其基本框架(分枝随机搜索)类似于二分搜索,即将搜索区域划分成等测度的两个子区间(也可以多个),通过采样确定最有可能包含全局最优点的子区间,将其保留;去掉另... 本文给出了算法性能的一种度量,并且提出了一种全局优化算法策略,其基本框架(分枝随机搜索)类似于二分搜索,即将搜索区域划分成等测度的两个子区间(也可以多个),通过采样确定最有可能包含全局最优点的子区间,将其保留;去掉另一半,在剩下的区间重复这一过程.尽管这种算法其简单性几近纯随机算法和格点法,但理论分析和实验结果表明,其效率却高得多. 展开更多
关键词 复杂性 分枝搜索 函数全局优化法
在线阅读 下载PDF
全局优化方法在物探计算技术中的新进展 被引量:4
2
作者 吴立明 许云 《现代地质》 CAS CSCD 北大核心 1997年第1期84-85,共2页
关键词 全局优化法 地球物理勘探 地震勘探 计算技术
在线阅读 下载PDF
鲁棒遗传算法设计 被引量:5
3
作者 郑振 曹先彬 +1 位作者 郑浩然 王煦法 《中国科学技术大学学报》 CAS CSCD 北大核心 2000年第1期119-124,共6页
提出一种能直接处理单元噪声和多元噪声的鲁棒遗传算法 .此算法将噪声作为个体实际表现型的一部分 ,使噪声在个体进化中得到处理 ,文中给出了它的数理基础 .模拟实验表明 ,这一算法在发现鲁棒优化解方面具有较强能力 .
关键词 鲁棒遗传算 环境适应度 设计 随机全局优化法
在线阅读 下载PDF
重型超重型动力触探锤击数修正系数外延研究 被引量:6
4
作者 李会中 郭飞 +2 位作者 潘玉珍 谢实宇 肖云华 《人民长江》 北大核心 2015年第1期30-35,共6页
西部地区河床覆盖层深厚且成因杂、结构散、颗粒粗,勘探取样与原位测试是水电工程地质勘察中常遇的技术难题。利用麦夸特法与通用全局优化法相结合的优化算法,基于1st Opt数学优化分析软件,对现行规范中重型、超重型动力触探锤击数修正... 西部地区河床覆盖层深厚且成因杂、结构散、颗粒粗,勘探取样与原位测试是水电工程地质勘察中常遇的技术难题。利用麦夸特法与通用全局优化法相结合的优化算法,基于1st Opt数学优化分析软件,对现行规范中重型、超重型动力触探锤击数修正系数进行了拟合研究。给出了双因子(杆长、实测锤击数)动力触探锤击数修正系数拟合函数与外延修正系数,并应用于金沙江乌东德水电站。研究成果不仅扩展了动力触探应用范围,而且为测试数据批量化计算与查表内插处理提供了便利,可供河床深厚覆盖层地区水电工程勘察参考使用。 展开更多
关键词 动力触探 修正系数 麦夸特 全局优化法 非线性拟合
在线阅读 下载PDF
冻融-干湿循环下硫酸盐渍土强度劣化的宏微观响应 被引量:1
5
作者 雷过 张卫兵 +2 位作者 李晓 刘臻祥 周鑫磊 《长江科学院院报》 CSCD 北大核心 2023年第6期154-159,165,共7页
冻融-干湿循环是引起硫酸盐渍土强度劣化的主要原因,而土体微观孔隙结构与强度之间有紧密的联系。通过无侧限抗压强度试验、压汞试验、电镜扫描(SEM)试验,采用全局优化法(UGO)分析数据,ImageJ2X处理SEM图像,探究了冻融-干湿循环下硫酸... 冻融-干湿循环是引起硫酸盐渍土强度劣化的主要原因,而土体微观孔隙结构与强度之间有紧密的联系。通过无侧限抗压强度试验、压汞试验、电镜扫描(SEM)试验,采用全局优化法(UGO)分析数据,ImageJ2X处理SEM图像,探究了冻融-干湿循环下硫酸盐渍土强度劣化的宏微观响应关系。结果表明:①冻融-干湿循环作用下,无侧限抗压强度随含盐量呈现先增大后减小的变化趋势,当压实度较低时强度峰值对应的含盐量低;从孔隙分布得出,1~10μm的孔隙占比为强度劣化的阈值,当其占比>50%时强度出现劣化,且劣化现象不可逆。②冻融-干湿作用下的无侧限抗压强度值与微观参数的歪度、结构优度间存在相关性,无侧限抗压强度与歪度呈现正相关,与结构优度呈负相关,且结构优度比歪度对强度影响更加显著。③影响无侧限抗压强度宏观指标劣化程度的微观参数依次为结构优度、歪度、分选系数、平均孔喉半径。本研究从定量分析的层面探究了硫酸盐渍土的宏微观响应关系,为进一步研究盐渍土工程性质提供参考。 展开更多
关键词 强度劣化 宏微观响应 硫酸盐渍土 冻融-干湿循环 无侧限抗压强度试验 压汞试验 电镜扫描试验 全局优化法
在线阅读 下载PDF
大型六轴数控移动回转压头框式液压机成套装备机身刚度影响关系研究及验证
6
作者 罗琳琳 李森 毕大森 《机械设计》 CSCD 北大核心 2012年第1期15-19,共5页
液压机的静刚度是保证其工作性能的重要指标。文中针对具备移动回转压头的无拉杆的组合龙门框架式压机进行研究。以THP34Y-1000G和S-THP34Y-1500作为样机,利用美国FARO公司生产的Laser Tracker X V2激光跟踪仪和瑞士Leica AT901-LR绝对... 液压机的静刚度是保证其工作性能的重要指标。文中针对具备移动回转压头的无拉杆的组合龙门框架式压机进行研究。以THP34Y-1000G和S-THP34Y-1500作为样机,利用美国FARO公司生产的Laser Tracker X V2激光跟踪仪和瑞士Leica AT901-LR绝对跟踪仪对其分别进行静刚度的实验检测。建立空间坐标-载荷-变形的数学模型,利用1stOpt软件基于麦夸特法(Levenberg-Marquardt)和通用全局优化法对实验数据进行多元非线性回归方程拟合,得到并验证了该类型液压机上下横梁在不同载荷下通用的变形方程模型,为液压机结构的设计、刚度检测等提供借鉴。 展开更多
关键词 液压机 刚度 激光跟踪仪 多元非线性回归 麦夸特 通用全局优化法
在线阅读 下载PDF
Search for circular and noncircular critical slip surfaces in slope stability analysis by hybrid genetic algorithm 被引量:8
7
作者 朱剑锋 陈昌富 《Journal of Central South University》 SCIE EI CAS 2014年第1期387-397,共11页
A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and... A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors.The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed,respectively.Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach.The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering. 展开更多
关键词 SLOPE STABILITY genetic algorithm tabu search algorithm safety factor
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
8
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
Gravitational search algorithm for coordinated design of PSS and TCSC as damping controller 被引量:2
9
作者 M.Eslami H.Shareef +1 位作者 A.Mohamed M.Khajehzadeh 《Journal of Central South University》 SCIE EI CAS 2012年第4期923-932,共10页
A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyr... A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) as a damping controller in the multi-machine power system. The coordinated design problem of PSS and TCSC controllers over a wide range of loading conditions is formulated as a multi-objective optimization problem which is the aggregation of two objectives related to damping ratio and damping factor. By minimizing the objective function with oscillation, the characteristics between areas are contained and hence the interactions among the PSS and TCSC controller under transient conditions are modified. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on a weakly connected power system subjected to different disturbances, loading conditions and system parameter variations. The cigenvalues analysis and nonlinear simulation results demonstrate the high performance of proposed controllers which is able to provide efficient damping of low frequency oscillations. 展开更多
关键词 gravitational search algorithm power system stabilizer thyristor controlled series capacitor tuning
在线阅读 下载PDF
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:3
10
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
在线阅读 下载PDF
Global optimization by small-world optimization algorithm based on social relationship network 被引量:1
11
作者 李晋航 邵新宇 +2 位作者 龙渊铭 朱海平 B.R.Schlessman 《Journal of Central South University》 SCIE EI CAS 2012年第8期2247-2265,共19页
A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociol... A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociology. Firstly, the solution space was organized into a small-world network model based on social relationship network. Secondly, a simple search strategy was adopted to navigate into this network in order to realize the optimization. In SWO, the two operators for searching the short-range contacts and long-range contacts in small-world network were corresponding to the exploitation and exploration, which have been revealed as the common features in many intelligent algorithms. The proposed algorithm was validated via popular benchmark functions and engineering problems. And also the impacts of parameters were studied. The simulation results indicate that because of the small-world theory, it is suitable for heuristic methods to search targets efficiently in this constructed small-world network model. It is not easy for each test mail to fall into a local trap by shifting into two mapping spaces in order to accelerate the convergence speed. Compared with some classical algorithms, SWO is inherited with optimal features and outstanding in convergence speed. Thus, the algorithm can be considered as a good alternative to solve global optimization problems. 展开更多
关键词 global optimization intelligent algorithm small-world optimization decentralized search
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部