期刊文献+
共找到143篇文章
< 1 2 8 >
每页显示 20 50 100
基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法
1
作者 李海燕 乔仁超 +1 位作者 李海江 陈泉 《东北大学学报(自然科学版)》 北大核心 2025年第1期26-34,共9页
为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均... 为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均匀雾区的细节特征,设计跨维度通道空间注意力优化信息权重.然后,提出全局建模Transformer模块加深编码器的特征提取过程,设计带有并行卷积的Swin Transformer捕捉特征之间的依赖关系.最后,设计门控特征融合解码模块复用图像重建所需的纹理信息,滤除不相关的雾噪声,提高去雾性能.在4个公开数据集上进行定性和定量实验,实验结果表明:所提算法能够有效地处理非均匀雾区域,重建纹理细腻且语义丰富的高保真无雾图像,其峰值信噪比和结构相似性指数都优于经典对比算法. 展开更多
关键词 图像去雾 全局残差注意力机制 CNN-Transformer架构 门控特征融合 图像重建
在线阅读 下载PDF
面向分割的局部分块与全局多尺度注意力机制
2
作者 谭荆彬 赵旭俊 苏慧娟 《计算机工程与设计》 北大核心 2025年第4期1141-1148,共8页
现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个... 现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个小块,分别计算这些小块的注意力得分,增强对局部信息的感知能力。使用一组空洞卷积计算整个特征图的得分,获得全局多尺度信息的权衡。实验中,将PGMA集成到U-Net、DeepLab、SegNet等语义分割网络中,有效提升了它们的分割性能。这表明PGMA在增强CNN性能方面优于当前主流方法。 展开更多
关键词 卷积神经网络 注意力机制 局部信息 分块策略 细节感知 全局多尺度信息 语义分割
在线阅读 下载PDF
局部注意力引导下的全局池化残差分类网络 被引量:2
3
作者 姜文涛 董睿 张晟翀 《光电工程》 CAS CSCD 北大核心 2024年第7期107-124,共18页
大部分注意力机制虽然能增强图像特征,但没有考虑局部特征的关联性影响特征整体的问题。针对以上问题,本文提出局部注意力引导下的全局池化残差分类网络(MSLENet)。MSLENet的基线网络为ResNet34,首先改变首层结构,保留图像重要信息;其... 大部分注意力机制虽然能增强图像特征,但没有考虑局部特征的关联性影响特征整体的问题。针对以上问题,本文提出局部注意力引导下的全局池化残差分类网络(MSLENet)。MSLENet的基线网络为ResNet34,首先改变首层结构,保留图像重要信息;其次提出多分割局部增强注意力机制(MSLE)模块,MSLE模块将图像整体分割成多个小图像,增强每个小图像的局部特征,通过特征组交互的方式将局部重要特征引导到全局特征中;最后提出池化残差(PR)模块来处理ResNet残差结构丢失信息的问题,提高各层之间的信息利用率。实验结果表明,MSLENet通过增强局部特征的关联性,在多个数据集上均有良好的效果,有效地提高了网络的表达能力。 展开更多
关键词 图像分类 注意力机制 残差结构 局部特征 全局特征 关联性
在线阅读 下载PDF
全局-局部特征融合的甲状腺细针穿刺活检全玻片图像轻量化样本级分类
4
作者 高俊涛 张菁 +1 位作者 孙萌 卓力 《电子测量与仪器学报》 北大核心 2025年第3期159-168,共10页
细针穿刺活检全玻片图像(FNAB-WSI)的细胞学检查对甲状腺乳头状癌或良性结节性增生的诊断至关重要。由于样本级FNAB-WSI具有上亿像素的超高分辨率,利用深度网络进行样本级别分类会消耗相当规模的计算资源。考虑到样本级FNAB-WSI兼具全... 细针穿刺活检全玻片图像(FNAB-WSI)的细胞学检查对甲状腺乳头状癌或良性结节性增生的诊断至关重要。由于样本级FNAB-WSI具有上亿像素的超高分辨率,利用深度网络进行样本级别分类会消耗相当规模的计算资源。考虑到样本级FNAB-WSI兼具全局和细胞团局部细节特征,提出了一种全局-局部特征融合的轻量化样本级分类方法。首先利用轻量化GhostNet网络提取全局特征,通过设置卷积步长控制特征图谱尺寸,并用特征切片与融合获取局部特征;然后对全局和局部特征分别最大池化和降维,进而融合为全局-局部特征;最后全连接全局-局部特征,并通过softmax分类器达成甲状腺样本级良恶性分类。在自建的FNAB-WSI样本级数据集上,方法的各项性能指标上均超越了其他轻量化方法,精度、召回率、准确率和AUC分别达到了最高的89.9%、91.2%、91.7%和92.5%,同时参数量方面具有可比性,为6.1×106,展现出了良好的平衡性能。方法不仅提高了样本级分类的准确性,还通过减少参数量优化了模型的计算效率,有望为甲状腺癌的临床诊断提供了一种有效的辅助工具。 展开更多
关键词 深度学习 全玻片图像 样本级分类 轻量化 全局-局部特征融合
在线阅读 下载PDF
融合注意力机制的双路人体姿态估计网络
5
作者 赵一鸣 孙士保 +2 位作者 石念峰 王国强 王喜龙 《计算机工程与设计》 北大核心 2025年第8期2297-2304,共8页
针对基于Transformer的人体姿态估计算法局部特征提取能力不足,且在热图转换过程中产生量化误差导致关键点预测精度低的问题,提出一种融合注意力机制的双路人体姿态估计方法。设计了双路CNN-Transformer模块(CT模块),同时捕获人体姿态... 针对基于Transformer的人体姿态估计算法局部特征提取能力不足,且在热图转换过程中产生量化误差导致关键点预测精度低的问题,提出一种融合注意力机制的双路人体姿态估计方法。设计了双路CNN-Transformer模块(CT模块),同时捕获人体姿态的局部特征和全局表征,提高模型的特征表达能力;构建多谱特征多样性模块,通过学习不同频率的分量增强卷积,提取有效的人体姿态局部特征信息;采用无偏数据处理消除人体关键点在热图编码过程中产生的量化误差。实验结果表明,与SimpleBaseline相比,所提方法在降低模型复杂度和计算量的同时,在COCO和MPII数据集上将平均精度分别提升了2.7和0.7个百分点。 展开更多
关键词 人体姿态估计 卷积神经网络 TRANSFORMER 多谱注意力 局部特征 全局依赖性 热图编码
在线阅读 下载PDF
基于Transformer的全局-局部融合特征的遮挡行人重识别方法
6
作者 汪旭 胡晓光 +1 位作者 付哲宇 赵利欣 《计算机科学与探索》 北大核心 2025年第7期1832-1850,共19页
行人重识别(ReID)是利用人工智能解决车站安检、城市监控系统等公共安全应用问题的技术,具有从跨设备采集的图像中识别某一特定行人的能力。但是在行人重识别等问题中,往往会出现行人被刻意遮挡或被复杂场景环境遮挡等因素,这大大增加... 行人重识别(ReID)是利用人工智能解决车站安检、城市监控系统等公共安全应用问题的技术,具有从跨设备采集的图像中识别某一特定行人的能力。但是在行人重识别等问题中,往往会出现行人被刻意遮挡或被复杂场景环境遮挡等因素,这大大增加了行人重识别的难度。在目前所提出的大部分遮挡行人重识别方法中,卷积神经网络模型更加关注局部特征,但难以获得全局结构信息,Transformer网络模型建模长距离的特征依赖,但易忽略局部特征细节。为解决这些难题,提出了一种全局-局部融合特征的遮挡行人重识别方法,利用CNN和Transformer特征学习网络的特点,在丰富行人局部特征的同时提升特征的全局表达能力。该模型由三个部分组成:CNN网络主要提取局部细节特征,Transformer分支侧重提取全局特征信息,并通过跨维度多尺度池化融合模块计算上述两个分支特征的相关性,进而实现全局-局部的特征融合;由多层级注意力引导生成的掩码模块能够精准地突出行人图像中的关键特征,自动对齐行人特征信息,抑制遮挡部分或背景噪声的干扰;图像高低频特征增强模块强化被遮挡行人的高低频特征信息,突出有效信息。消融实验以及在相关数据集上的实验结果证明了所提方法的有效性。 展开更多
关键词 全局 局部 跨维度多尺度池化融合 多层级注意力 高低频特征
在线阅读 下载PDF
基于局部全局自注意与空间通道稀疏增强的红外船舶目标检测算法研究
7
作者 黎煜培 王忠华 《红外与激光工程》 北大核心 2025年第3期339-351,共13页
针对红外船舶图像检测中存在目标尺度变化大、密集堆叠目标多、小目标细节丢失等问题,提出了一种基于局部全局自注意与空间通道稀疏增强的红外船舶目标检测算法。首先,在YOLOv8s主干网络中融入局部全局自注意力模块,以获取更丰富的局部... 针对红外船舶图像检测中存在目标尺度变化大、密集堆叠目标多、小目标细节丢失等问题,提出了一种基于局部全局自注意与空间通道稀疏增强的红外船舶目标检测算法。首先,在YOLOv8s主干网络中融入局部全局自注意力模块,以获取更丰富的局部和全局特征,解决深度特征提取过程中的信息稀释丢失问题,实现细致化聚焦目标特征,增强特征间依赖关系,提高小目标的特征提取能力。其次,在颈部网络中加入空间通道稀疏注意力模块,将分块特征提取与通道稀疏策略深度融合,提升多尺度目标的空间信息捕获能力,重构通道信息,再对特征重标定,强化重要特征信息的影响,增强多尺度特征融合能力。最后,采用引入了递减置信度惩罚因子的Soft-NMS改进NMS,优化堆叠目标与小目标误检漏检的问题。实验结果表明,改进后的YOLOv8s模型相较于基准模型,在mAP0.5和mAP0.5∶0.95评价指标上分别提高了2.1%和4.4%,达到95.7%和72.8%,进一步验证了该算法在提升红外船舶目标检测精度上的有效性。同时,与其他经典模型和最新的YOLOv11模型相比,该算法在检测精度方面具有更好的性能。 展开更多
关键词 YOLOv8s 局部全局注意力 空间通道稀疏注意力 Soft-NMS
在线阅读 下载PDF
融合多特征与全局-局部Transformer的图像修复算法
8
作者 滕诗宇 何丽君 《电子测量技术》 北大核心 2025年第6期121-129,共9页
针对当前图像修复领域所面临的高计算复杂度以及在生成结构合理且细节丰富的图像方面的局限,提出了一种融合多尺度分层特征与全局-局部协同Transformer的图像修复模型。首先提出多尺度分层特征融合模块,以实现深层特征与浅层特征细节上... 针对当前图像修复领域所面临的高计算复杂度以及在生成结构合理且细节丰富的图像方面的局限,提出了一种融合多尺度分层特征与全局-局部协同Transformer的图像修复模型。首先提出多尺度分层特征融合模块,以实现深层特征与浅层特征细节上的有效融合,在扩大感受野的同时减少关键信息丢失情况。其次提出用于全局推理的全局-局部协同Transformer模块,它通过集成矩形窗口注意力机制和局部前馈神经网络,在降低计算复杂度的同时,提高模型对全局上下文信息的宏观理解和对局部细节特征的微观捕捉能力,增强图像的整体一致性。实验在CelebA-HQ和Places2数据集上进行了验证,在处理40%~50%掩码时,所提方法与常用的修复方法对比,PSNR平均提高了0.26~6.25 dB,SSIM平均提升了1.4%~19%,L1平均下降了0.2%~5.66%。实验证明,所提方法修复后的图像在视觉上具有更加真实和自然的效果,进一步验证了该方法的有效性。 展开更多
关键词 深度学习 图像修复 多尺度分层特征融合 全局-局部协同Transformer 矩形窗口注意力机制 局部前馈神经网络
在线阅读 下载PDF
基于全局与局部特征加权融合的隐喻识别模型
9
作者 马月坤 马铭佑 《计算机工程》 北大核心 2025年第5期143-153,共11页
部分文本中隐喻本体与喻体位置相距较远,导致模型学习文本语境信息的难度增大,以及所提取的特征中重要信息不明显。为此,提出一种基于全局与局部特征加权融合的隐喻识别模型。首先,设计了局部特征提取模块(LFEM),通过对不同范围以及更... 部分文本中隐喻本体与喻体位置相距较远,导致模型学习文本语境信息的难度增大,以及所提取的特征中重要信息不明显。为此,提出一种基于全局与局部特征加权融合的隐喻识别模型。首先,设计了局部特征提取模块(LFEM),通过对不同范围以及更大感受野下文本局部特征的关注来达到学习词语周围不同距离语境信息的目的;其次,使用双向长短时记忆(BiLSTM)与多头注意力构成全局特征提取模块(GFEM),学习宏观句子级语义信息;最后,设计了特征加权融合模块(FWFM),对提取得到的2种特征进行自适应动态融合,以较少的噪声获得鲁棒性更强且重要信息更为集中的特征。实验结果表明,相比RoBERTa+Transformer+GCN模型,所提模型在VUA ALLPOS、TOEFL ALLPOS以及CCL 3个数据集上的F1值分别提升了1.1、1.2和3.2百分点,所提模型具有更高的隐喻识别精度。 展开更多
关键词 隐喻识别 全局特征 局部特征 特征加权 注意力机制 双向长短时记忆
在线阅读 下载PDF
基于Transformer全局-局部特征融合的RGB-D显著性检测
10
作者 宋梦柯 王芸 郑元超 《计算机应用与软件》 北大核心 2025年第3期176-182,共7页
现有的RGB-D方法一般通过局部操作分别应用多尺度和多模态融合,但这无法捕获远程依赖性,因此对特征整体表征能力不足。针对此问题,提出一种全局-局部特征融合网络。在低层特征提取阶段,将两个分支特征直接融合;在高层特征提取阶段,将融... 现有的RGB-D方法一般通过局部操作分别应用多尺度和多模态融合,但这无法捕获远程依赖性,因此对特征整体表征能力不足。针对此问题,提出一种全局-局部特征融合网络。在低层特征提取阶段,将两个分支特征直接融合;在高层特征提取阶段,将融合后特征送入Transformer编码器通过在所有位置同时整合多尺度和多模态的特征来进行充分的特征融合,获得全局特征依赖关系之后再送入主干网络提取全局—局部融合特征。同时提出双重注意力模块,用来增强两个分支特征的融合效果。在五个公开数据集上进行的实验表明,该网络在三个评价指标上均取得了较好的表现。 展开更多
关键词 RGB-D显著性检测 全局-局部特征 跨模态融合 多尺度 TRANSFORMER
在线阅读 下载PDF
从全局到局部:双注意力融合去雾网络 被引量:2
11
作者 杨瑷玮 王华珂 侯兴松 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第7期191-200,共10页
为了处理现有的基于卷积神经网络去雾方法只使用单一的注意力、很难生成细节生动的清晰图像,且容易导致色彩失真的问题,提出了一个全局与局部注意力融合的图像去雾方法,以获得正常清晰度和无色彩失真的去雾图像。首先利用通道注意力将... 为了处理现有的基于卷积神经网络去雾方法只使用单一的注意力、很难生成细节生动的清晰图像,且容易导致色彩失真的问题,提出了一个全局与局部注意力融合的图像去雾方法,以获得正常清晰度和无色彩失真的去雾图像。首先利用通道注意力将输入的有雾图像在通道维度切分为两部分,一部分送入通道像素注意力通道抽取局部特征,另一部分送入Transformer通道学习全局特征,然后利用像素注意力对两个通道学习的特征进行融合,将上述模块作为基本单元组合为一个多级U型去雾网络,增加残差连接缓解上下采样导致的细节信息丢失,最后在网络底层加入一个Transformer模块学习全局信息。在多个公开可用的去雾图像数据集RESIDE SOTS Indoor、RESIDE SOTS Outdoor上测试所提方法的有效性,结果表明:对比经典的去雾方法,所提网络生成的图像细节更丰富并且色彩失真最少;在RESIDE SOTS Outdoor数据集上,相比经典的FFA-Net,峰值信噪比提高1.16 dB,相比GridDehazeNet,峰值信噪比提高3.68 dB。提出的全局与局部注意力融合方法能有效地去除雾霾,提升图像的对比度与清晰度,设计的多级U型去雾网络和残差连接结构能够缓解细节丢失,提升去雾效果,获得清晰的图像。 展开更多
关键词 图像去雾 全局与局部注意力融合 通道像素注意力 Transformer模块
在线阅读 下载PDF
整合边缘卷积与全局-局部自注意力的机载点云分类
12
作者 涂静敏 严进 +3 位作者 李礼 姚剑 李婕 康妍斐 《光学精密工程》 CSCD 北大核心 2024年第24期3658-3673,共16页
激光点云分类是实现三维场景理解的基础。针对机载点云大场景分类中存在的特征表达不足、样本类别不均衡的问题,本文提出一种整合边缘卷积与全局-局部自注意力的机载点云分类方法。首先,以U-net为网络框架,融合Point Transformer与边缘... 激光点云分类是实现三维场景理解的基础。针对机载点云大场景分类中存在的特征表达不足、样本类别不均衡的问题,本文提出一种整合边缘卷积与全局-局部自注意力的机载点云分类方法。首先,以U-net为网络框架,融合Point Transformer与边缘卷积模块,使得模型能够关注到复杂地物边界和纹理信息,获得表达能力更好的局部几何特征。其次,创新性地提出一种融合全局上下文信息和局部结构特征的自注意力机制,全局自注意力模块倾向于整个输入序列的信息,而局部自注意力模块则更注重于局部区域的细节。两种机制结合增强了对长距离依赖关系和局部结构的捕捉,同时使得模型能够兼顾少数类别的关键特征,在一定程度上降低样本类别不均衡对分类精度的影响,有助于提高模型对复杂地物关系的分类能力。最后,在公开的ISPRS-3D数据集和WHU-Urban3D数据集上对本文所提出的方法进行验证,实验结果表明,该方法在两个数据集上的分类精度分别为82.5%和87.4%,优于PointNet++,Stratified Transformer等经典网络及ISPRS 3D官网竞赛网络,可有效提升机载点云分类精度。 展开更多
关键词 机载激光雷达 点云分类 边缘卷积 全局-局部注意力 U-net
在线阅读 下载PDF
融合全局增强-局部注意特征的表情识别网络 被引量:3
13
作者 刘娟 王颖 +1 位作者 胡敏 黄忠 《计算机科学与探索》 CSCD 北大核心 2024年第9期2487-2500,共14页
为抑制自然场景下遮挡和姿态变化等因素对人脸表情识别的影响,提出一种融合全局增强-局部注意特征(GE-LA)的表情识别网络。为获取增强的全局上下文信息,构建通道-空间全局特征增强结构,该结构采用通道流模块(CFM)和空间流模块(SFM),分... 为抑制自然场景下遮挡和姿态变化等因素对人脸表情识别的影响,提出一种融合全局增强-局部注意特征(GE-LA)的表情识别网络。为获取增强的全局上下文信息,构建通道-空间全局特征增强结构,该结构采用通道流模块(CFM)和空间流模块(SFM),分别获取对称多尺度通道语义以及像素级空间语义,并结合两类语义生成全局增强特征;为抽取局部细节特征,将高效通道注意力(ECA)机制改进为通道-空间注意力(CSA)机制,并以此构建局部注意模块(LAM)获取通道和空间高级语义。为提升网络对遮挡、姿态变化等因素的抗干扰能力,设计一种自适应策略实现全局增强特征和局部注意特征的加权融合,并基于自适应融合特征实现表情分类。在自然场景人脸表情数据集RAF-DB和FERPlus上的实验结果表明,提出网络的表情识别率分别为89.82%和89.93%,比基线网络ResNet50分别提高了13.39个百分点和10.62个百分点。与相关方法相比,提出方法降低了遮挡、姿态变化的影响,在自然场景下具有较好的表情识别效果。 展开更多
关键词 人脸表情识别 全局增强特征 局部注意特征 自适应融合策略
在线阅读 下载PDF
融合注意力谱非局部块的视网膜图像质量分级 被引量:2
14
作者 梁礼明 董信 +2 位作者 雷坤 夏雨辰 吴健 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期102-113,共12页
视网膜图像质量评估(RIQA)是筛查糖尿病视网膜病变的关键组成部分之一。针对视网膜图像质量差异大且质量评估模型泛化能力不足等问题,提出一种融合注意力谱非局部块的多特征算法来对RIQA进行预测分级。首先采用融合光谱非局部块的ResNe... 视网膜图像质量评估(RIQA)是筛查糖尿病视网膜病变的关键组成部分之一。针对视网膜图像质量差异大且质量评估模型泛化能力不足等问题,提出一种融合注意力谱非局部块的多特征算法来对RIQA进行预测分级。首先采用融合光谱非局部块的ResNet50网络对输入图像进行特征提取;其次引入高效通道注意力用于提升模型对数据的表达能力,有效捕获通道间特征信息关系;再次利用特征迭代注意力融合模块对各局部特征信息融合;最后联合焦点损失和正则损失进一步提高质量分级的效果。在Eye-Quality数据集上准确率为88.59%,精确度为87.56%,敏感度和F1值分别为86.10%和86.74%。在RIQA-RFMiD数据集上准确率和F1值分别为84.22%和67.17%,仿真实验表明,文中算法对视网膜图像质量评估任务中具有较好的泛化能力。 展开更多
关键词 视网膜图像质量分级 谱非局部 注意力机制 特征迭代融合 组合损失
在线阅读 下载PDF
GLCrowd:基于全局-局部注意力的弱监督密集场景人群计数模型 被引量:1
15
作者 张红民 田钱前 +1 位作者 颜鼎鼎 卜令宇 《光电工程》 CAS CSCD 北大核心 2024年第10期75-86,共12页
针对人群计数在密集场景下存在背景复杂、尺度变化大等问题,提出了一种结合全局-局部注意力的弱监督密集场景人群计数模型——GLCrowd。首先,设计了一种结合深度卷积的局部注意力模块,通过上下文权重增强局部特征,同时结合特征权重共享... 针对人群计数在密集场景下存在背景复杂、尺度变化大等问题,提出了一种结合全局-局部注意力的弱监督密集场景人群计数模型——GLCrowd。首先,设计了一种结合深度卷积的局部注意力模块,通过上下文权重增强局部特征,同时结合特征权重共享获得高频局部信息。其次,利用Vision Transformer(ViT)的自注意力机制捕获低频全局信息。最后,将全局与局部注意力有效融合,并通过回归令牌来完成计数。在Shanghai Tech PartA、Shanghai Tech PartB、UCF-QNRF以及UCF_CC_50数据集上进行了模型测试,MAE分别达到了64.884、8.958、95.523、209.660,MSE分别达到了104.411、16.202、173.453、282.217。结果表明,提出的GLCrowd网络模型在密集场景下的人群计数中具有较好的性能。 展开更多
关键词 人群计数 Vision Transformer 全局-局部注意力 弱监督学习
在线阅读 下载PDF
基于全局-局部注意力机制和YOLOv5的宫颈细胞图像异常检测模型
16
作者 胡雯然 傅蓉 《南方医科大学学报》 CAS CSCD 北大核心 2024年第7期1217-1226,共10页
目标建立一种新的基于全局-局部注意机制和YOLOv5的宫颈病变细胞检测模型(Trans-YOLOv5),为准确、高效地分析宫颈细胞学图像并做出诊断提供帮助。方法使用共含有7410张宫颈细胞学图像且均包含对应真实标签的公开数据集。采用结合了数据... 目标建立一种新的基于全局-局部注意机制和YOLOv5的宫颈病变细胞检测模型(Trans-YOLOv5),为准确、高效地分析宫颈细胞学图像并做出诊断提供帮助。方法使用共含有7410张宫颈细胞学图像且均包含对应真实标签的公开数据集。采用结合了数据扩增方式与标签平滑等技巧的YOLOv5网络结构实现对宫颈病变细胞的多分类检测。在YOLOv5骨干网络引用CBT3以增强深层全局信息提取能力,设计ADH检测头提高检测头解耦后定位分支对纹理特征的结合能力,从而实现全局-局部注意机制的融合。结果实验结果表明Trans-YOLOv5优于目前最先进的方法。mAP和AR分别达到65.9%和53.3%,消融实验结果验证了Trans-YOLOv5各组成部分的有效性。结论本文发挥不同注意力机制分别在全局特征与局部特征提取能力的差异,提升YOLOv5对宫颈细胞图像中异常细胞的检测精度,展现了其在自动化辅助宫颈癌筛查工作量的巨大潜力。 展开更多
关键词 宫颈细胞图像异常检测 YOLOv5 图像处理 全局局部特征融合
在线阅读 下载PDF
基于全局注意力的正交融合图像描述符
17
作者 艾列富 陶勇 蒋常玉 《图学学报》 CSCD 北大核心 2024年第3期472-481,共10页
图像描述符是计算机视觉任务重要研究对象,被广泛应用于图像分类、分割、识别与检索等领域。深度图像描述符在局部特征提取分支缺少高维特征的空间与通道信息的关联性,导致局部特征表达的信息不充分。为此,提出一种融合局部、全局特征... 图像描述符是计算机视觉任务重要研究对象,被广泛应用于图像分类、分割、识别与检索等领域。深度图像描述符在局部特征提取分支缺少高维特征的空间与通道信息的关联性,导致局部特征表达的信息不充分。为此,提出一种融合局部、全局特征的图像描述符,在局部特征提取分支进行膨胀卷积提取多尺度特征图,输出的特征拼接后经过含有多层感知器的全局注意力机制捕捉具有关联性的通道-空间信息,再加工后输出最终的局部特征;高维的全局分支经过全局池化和全卷积生成全局特征向量;提取局部特征在全局特征向量上的正交值与全局特征串联后聚合形成最终的描述符。同时,在特征约束方面,使用包含子类心的角域度损失函数增大模型在大规模数据集的鲁棒性。在国际公开数据集Roxford5k和Rparis6k上进行实验,所提出描述符的平均检索精度在medium和hard模式分别为81.87%和59.74%以及91.61%和79.12%,比深度正交融合描述符分别提升了1.70%,1.56%,2.00%和1.83%,较其他图像描述符具有更好的检索精度。 展开更多
关键词 图像描述符 膨胀卷积 全局注意力 特征融合 子类心角度域损失
在线阅读 下载PDF
基于三分支对抗学习和补偿注意力的红外和可见光图像融合 被引量:1
18
作者 邸敬 任莉 +2 位作者 刘冀钊 郭文庆 廉敬 《红外技术》 CSCD 北大核心 2024年第5期510-521,共12页
针对现有深度学习图像融合方法依赖卷积提取特征,并未考虑源图像全局特征,融合结果容易产生纹理模糊、对比度低等问题,本文提出一种基于三分支对抗学习和补偿注意力的红外和可见光图像融合方法。首先,生成器网络采用密集块和补偿注意力... 针对现有深度学习图像融合方法依赖卷积提取特征,并未考虑源图像全局特征,融合结果容易产生纹理模糊、对比度低等问题,本文提出一种基于三分支对抗学习和补偿注意力的红外和可见光图像融合方法。首先,生成器网络采用密集块和补偿注意力机制构建局部-全局三分支提取特征信息。然后,利用通道特征和空间特征变化构建补偿注意力机制提取全局信息,更进一步提取红外目标和可见光细节表征。其次,设计聚焦双对抗鉴别器,以确定融合结果和源图像之间的相似分布。最后,选用公开数据集TNO和RoadScene进行实验并与其他9种具有代表性的图像融合方法进行对比,本文提出的方法不仅获得纹理细节更清晰、对比度更好的融合结果,而且客观度量指标优于其他先进方法。 展开更多
关键词 红外可见光图像融合 局部-全局三分支 局部特征提取 补偿注意力机制 对抗学习 聚焦双对抗鉴别器
在线阅读 下载PDF
全局与局部多尺度特征融合晶圆缺陷分类网络 被引量:1
19
作者 陈晓雷 李正成 +2 位作者 杨富龙 温润玉 沈星阳 《电子测量与仪器学报》 CSCD 北大核心 2024年第10期159-169,共11页
在半导体制造领域,晶圆缺陷分类是确保产品质量的重要步骤。然而,由于晶圆缺陷的多样性和复杂性,现有的混合型晶圆缺陷分类网络在准确性上仍然存在不足。针对这一问题,提出了一种基于全局和局部多尺度特征融合的混合型晶圆缺陷分类网络... 在半导体制造领域,晶圆缺陷分类是确保产品质量的重要步骤。然而,由于晶圆缺陷的多样性和复杂性,现有的混合型晶圆缺陷分类网络在准确性上仍然存在不足。针对这一问题,提出了一种基于全局和局部多尺度特征融合的混合型晶圆缺陷分类网络—MLG-Net。MLG-Net由3个主要模块组成:特征提取模块、全局分支和局部分支。该网络旨在更好地提取和利用晶圆缺陷图像的全局语义信息与局部细节特征,这两种特征通过多尺度特征融合技术相结合,最终形成一个更加全面的特征表示,有助于分类器在面对复杂混合缺陷时,做出更为准确的判断,从而提升分类精度。为了验证MLG-Net的有效性,在包含38种混合类型缺陷的数据集—MixedWM38上进行了大量实验,其分类准确度达到98.84%。结果表明,MLG-Net在综合性能上优于当前主流的六种晶圆缺陷分类方法。这一结果证明了全局与局部特征融合在处理混合型晶圆缺陷分类任务中的重要性和有效性。 展开更多
关键词 半导体制造 晶圆缺陷分类 混合型缺陷 全局与局部特征 特征融合
在线阅读 下载PDF
基于面部全局抑郁特征局部感知力增强和全局-局部语义相关性特征融合的抑郁强度识别
20
作者 孙强 李正 何浪 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2249-2263,共15页
现有基于深度学习的大多数方法在实现患者抑郁程度自动识别的过程中,主要存在两大挑战:(1)难以利用深度模型自动地从面部表情有效学习到抑郁强度相关的全局上下文信息,(2)往往忽略抑郁强度相关的全局和局部信息之间的语义一致性。为此,... 现有基于深度学习的大多数方法在实现患者抑郁程度自动识别的过程中,主要存在两大挑战:(1)难以利用深度模型自动地从面部表情有效学习到抑郁强度相关的全局上下文信息,(2)往往忽略抑郁强度相关的全局和局部信息之间的语义一致性。为此,该文提出一种全局抑郁特征局部感知力增强和全局-局部语义相关性特征融合(PLEGDF-FGLSCF)的抑郁强度识别深度模型。首先,设计了全局抑郁特征局部感知力增强(PLEGDF)模块,用于提取面部局部区域之间的语义相关性信息,促进不同局部区域与抑郁相关的信息之间的交互,从而增强局部抑郁特征驱动的全局抑郁特征表达力。然后,提出了全局-局部语义相关性特征融合(FGLSCF)模块,用于捕捉全局和局部语义信息之间的关联性,实现全局和局部抑郁特征之间的语义一致性描述。最后,在AVEC2013和AVEC2014数据集上,利用PLEGDF-FGLSCF模型获得的识别结果在均方根误差(RMSE)和平均绝对误差(MAE)指标上的值分别是7.75/5.96和7.49/5.99,优于大多数已有的基准模型,证实了该方法的合理性和有效性。 展开更多
关键词 抑郁强度 人脸图像 局部感知力增强 全局局部特征融合 语义一致性
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部