期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
全局-局部特征融合的甲状腺细针穿刺活检全玻片图像轻量化样本级分类
1
作者 高俊涛 张菁 +1 位作者 孙萌 卓力 《电子测量与仪器学报》 北大核心 2025年第3期159-168,共10页
细针穿刺活检全玻片图像(FNAB-WSI)的细胞学检查对甲状腺乳头状癌或良性结节性增生的诊断至关重要。由于样本级FNAB-WSI具有上亿像素的超高分辨率,利用深度网络进行样本级别分类会消耗相当规模的计算资源。考虑到样本级FNAB-WSI兼具全... 细针穿刺活检全玻片图像(FNAB-WSI)的细胞学检查对甲状腺乳头状癌或良性结节性增生的诊断至关重要。由于样本级FNAB-WSI具有上亿像素的超高分辨率,利用深度网络进行样本级别分类会消耗相当规模的计算资源。考虑到样本级FNAB-WSI兼具全局和细胞团局部细节特征,提出了一种全局-局部特征融合的轻量化样本级分类方法。首先利用轻量化GhostNet网络提取全局特征,通过设置卷积步长控制特征图谱尺寸,并用特征切片与融合获取局部特征;然后对全局和局部特征分别最大池化和降维,进而融合为全局-局部特征;最后全连接全局-局部特征,并通过softmax分类器达成甲状腺样本级良恶性分类。在自建的FNAB-WSI样本级数据集上,方法的各项性能指标上均超越了其他轻量化方法,精度、召回率、准确率和AUC分别达到了最高的89.9%、91.2%、91.7%和92.5%,同时参数量方面具有可比性,为6.1×106,展现出了良好的平衡性能。方法不仅提高了样本级分类的准确性,还通过减少参数量优化了模型的计算效率,有望为甲状腺癌的临床诊断提供了一种有效的辅助工具。 展开更多
关键词 深度学习 全玻片图像 样本级分类 轻量化 全局-局部特征融合
在线阅读 下载PDF
基于Transformer全局-局部特征融合的RGB-D显著性检测 被引量:1
2
作者 宋梦柯 王芸 郑元超 《计算机应用与软件》 北大核心 2025年第3期176-182,共7页
现有的RGB-D方法一般通过局部操作分别应用多尺度和多模态融合,但这无法捕获远程依赖性,因此对特征整体表征能力不足。针对此问题,提出一种全局-局部特征融合网络。在低层特征提取阶段,将两个分支特征直接融合;在高层特征提取阶段,将融... 现有的RGB-D方法一般通过局部操作分别应用多尺度和多模态融合,但这无法捕获远程依赖性,因此对特征整体表征能力不足。针对此问题,提出一种全局-局部特征融合网络。在低层特征提取阶段,将两个分支特征直接融合;在高层特征提取阶段,将融合后特征送入Transformer编码器通过在所有位置同时整合多尺度和多模态的特征来进行充分的特征融合,获得全局特征依赖关系之后再送入主干网络提取全局—局部融合特征。同时提出双重注意力模块,用来增强两个分支特征的融合效果。在五个公开数据集上进行的实验表明,该网络在三个评价指标上均取得了较好的表现。 展开更多
关键词 RGB-D显著性检测 全局-局部特征 跨模态融合 多尺度 TRANSFORMER
在线阅读 下载PDF
基于Transformer的全局-局部融合特征的遮挡行人重识别方法
3
作者 汪旭 胡晓光 +1 位作者 付哲宇 赵利欣 《计算机科学与探索》 北大核心 2025年第7期1832-1850,共19页
行人重识别(ReID)是利用人工智能解决车站安检、城市监控系统等公共安全应用问题的技术,具有从跨设备采集的图像中识别某一特定行人的能力。但是在行人重识别等问题中,往往会出现行人被刻意遮挡或被复杂场景环境遮挡等因素,这大大增加... 行人重识别(ReID)是利用人工智能解决车站安检、城市监控系统等公共安全应用问题的技术,具有从跨设备采集的图像中识别某一特定行人的能力。但是在行人重识别等问题中,往往会出现行人被刻意遮挡或被复杂场景环境遮挡等因素,这大大增加了行人重识别的难度。在目前所提出的大部分遮挡行人重识别方法中,卷积神经网络模型更加关注局部特征,但难以获得全局结构信息,Transformer网络模型建模长距离的特征依赖,但易忽略局部特征细节。为解决这些难题,提出了一种全局-局部融合特征的遮挡行人重识别方法,利用CNN和Transformer特征学习网络的特点,在丰富行人局部特征的同时提升特征的全局表达能力。该模型由三个部分组成:CNN网络主要提取局部细节特征,Transformer分支侧重提取全局特征信息,并通过跨维度多尺度池化融合模块计算上述两个分支特征的相关性,进而实现全局-局部的特征融合;由多层级注意力引导生成的掩码模块能够精准地突出行人图像中的关键特征,自动对齐行人特征信息,抑制遮挡部分或背景噪声的干扰;图像高低频特征增强模块强化被遮挡行人的高低频特征信息,突出有效信息。消融实验以及在相关数据集上的实验结果证明了所提方法的有效性。 展开更多
关键词 全局 局部 跨维度多尺度池化融合 多层级注意力 高低频特征
在线阅读 下载PDF
融合多特征与全局-局部Transformer的图像修复算法 被引量:1
4
作者 滕诗宇 何丽君 《电子测量技术》 北大核心 2025年第6期121-129,共9页
针对当前图像修复领域所面临的高计算复杂度以及在生成结构合理且细节丰富的图像方面的局限,提出了一种融合多尺度分层特征与全局-局部协同Transformer的图像修复模型。首先提出多尺度分层特征融合模块,以实现深层特征与浅层特征细节上... 针对当前图像修复领域所面临的高计算复杂度以及在生成结构合理且细节丰富的图像方面的局限,提出了一种融合多尺度分层特征与全局-局部协同Transformer的图像修复模型。首先提出多尺度分层特征融合模块,以实现深层特征与浅层特征细节上的有效融合,在扩大感受野的同时减少关键信息丢失情况。其次提出用于全局推理的全局-局部协同Transformer模块,它通过集成矩形窗口注意力机制和局部前馈神经网络,在降低计算复杂度的同时,提高模型对全局上下文信息的宏观理解和对局部细节特征的微观捕捉能力,增强图像的整体一致性。实验在CelebA-HQ和Places2数据集上进行了验证,在处理40%~50%掩码时,所提方法与常用的修复方法对比,PSNR平均提高了0.26~6.25 dB,SSIM平均提升了1.4%~19%,L1平均下降了0.2%~5.66%。实验证明,所提方法修复后的图像在视觉上具有更加真实和自然的效果,进一步验证了该方法的有效性。 展开更多
关键词 深度学习 图像修复 多尺度分层特征融合 全局-局部协同Transformer 矩形窗口注意力机制 局部前馈神经网络
在线阅读 下载PDF
时空网络特征融合的病理步态识别方法
5
作者 李聪聪 王斌 +1 位作者 李亚南 李一帆 《计算机工程与设计》 北大核心 2025年第7期2109-2116,共8页
针对病理步态识别方法中存在空间信息或时序信息丢失的问题,提出一种时空网络特征融合的病理步态识别方法。结合卷积网络和时序网络,学习更具判别性的步态时空特征。卷积网络中引入阶梯融合式空洞空间金字塔池化,获得更鲁棒的多尺度融... 针对病理步态识别方法中存在空间信息或时序信息丢失的问题,提出一种时空网络特征融合的病理步态识别方法。结合卷积网络和时序网络,学习更具判别性的步态时空特征。卷积网络中引入阶梯融合式空洞空间金字塔池化,获得更鲁棒的多尺度融合步态表征。联合卷积核替换和残差块改进对卷积网络进一步优化。时序网络中引入全局与局部时空特征融合模块,形成对时空特征的更细节表达。融合空间特征和时空特征,减轻Bi LSTM学习空间特征中时间模式的过程中丢失空间特征的影响。所提模型在自建数据集和GAIT-IST数据集上的准确率分别达到了97.69%和94.16%,实验结果表明,该方法较其它方法取得了更优的性能。 展开更多
关键词 病理步态识别 时空网络 特征融合 时空特征 阶梯融合式空洞空间金字塔池化 多尺度特征 全局与局部时空特征融合模块
在线阅读 下载PDF
基于多尺度时空特征融合的视频异常事件检测 被引量:1
6
作者 李歌 肖洪兵 +2 位作者 闫善武 王瑜 孙梅 《燕山大学学报》 北大核心 2025年第1期74-82,共9页
在视频异常事件检测的问题上,现有的研究方法未充分考虑场景中的背景信息干扰和目标尺度变化,导致检测精度普遍较低。针对此类问题,提出了一种融合多尺度时空信息的异常事件检测方法。首先,应用一种坐标注意力的方法,使模型更多地关注... 在视频异常事件检测的问题上,现有的研究方法未充分考虑场景中的背景信息干扰和目标尺度变化,导致检测精度普遍较低。针对此类问题,提出了一种融合多尺度时空信息的异常事件检测方法。首先,应用一种坐标注意力的方法,使模型更多地关注异常事件发生的区域。其次,为了提取到各层次丰富的时空信息,采用空洞卷积网络构建一种多分支多尺度的特征融合模块。最后,考虑到正常事件的多样性,提出一种规则分数,以便在测试阶段进一步更新记忆增强模块中的记忆项,提高对异常事件的检测精度。在CUHK Avenue和ShanghaiTech数据集的相关实验中,提出方法的帧级AUC分别达到了88.7%和77.5%,且满足视频检测的实时性要求,验证了该方法的可行性和有效性。 展开更多
关键词 视频异常检测 无监督学习 空洞卷积 多尺度时空特征融合 记忆增强模块
在线阅读 下载PDF
全局与局部多尺度特征融合晶圆缺陷分类网络 被引量:1
7
作者 陈晓雷 李正成 +2 位作者 杨富龙 温润玉 沈星阳 《电子测量与仪器学报》 CSCD 北大核心 2024年第10期159-169,共11页
在半导体制造领域,晶圆缺陷分类是确保产品质量的重要步骤。然而,由于晶圆缺陷的多样性和复杂性,现有的混合型晶圆缺陷分类网络在准确性上仍然存在不足。针对这一问题,提出了一种基于全局和局部多尺度特征融合的混合型晶圆缺陷分类网络... 在半导体制造领域,晶圆缺陷分类是确保产品质量的重要步骤。然而,由于晶圆缺陷的多样性和复杂性,现有的混合型晶圆缺陷分类网络在准确性上仍然存在不足。针对这一问题,提出了一种基于全局和局部多尺度特征融合的混合型晶圆缺陷分类网络—MLG-Net。MLG-Net由3个主要模块组成:特征提取模块、全局分支和局部分支。该网络旨在更好地提取和利用晶圆缺陷图像的全局语义信息与局部细节特征,这两种特征通过多尺度特征融合技术相结合,最终形成一个更加全面的特征表示,有助于分类器在面对复杂混合缺陷时,做出更为准确的判断,从而提升分类精度。为了验证MLG-Net的有效性,在包含38种混合类型缺陷的数据集—MixedWM38上进行了大量实验,其分类准确度达到98.84%。结果表明,MLG-Net在综合性能上优于当前主流的六种晶圆缺陷分类方法。这一结果证明了全局与局部特征融合在处理混合型晶圆缺陷分类任务中的重要性和有效性。 展开更多
关键词 半导体制造 晶圆缺陷分类 混合型缺陷 全局与局部特征 特征融合
在线阅读 下载PDF
基于面部全局抑郁特征局部感知力增强和全局-局部语义相关性特征融合的抑郁强度识别
8
作者 孙强 李正 何浪 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2249-2263,共15页
现有基于深度学习的大多数方法在实现患者抑郁程度自动识别的过程中,主要存在两大挑战:(1)难以利用深度模型自动地从面部表情有效学习到抑郁强度相关的全局上下文信息,(2)往往忽略抑郁强度相关的全局和局部信息之间的语义一致性。为此,... 现有基于深度学习的大多数方法在实现患者抑郁程度自动识别的过程中,主要存在两大挑战:(1)难以利用深度模型自动地从面部表情有效学习到抑郁强度相关的全局上下文信息,(2)往往忽略抑郁强度相关的全局和局部信息之间的语义一致性。为此,该文提出一种全局抑郁特征局部感知力增强和全局-局部语义相关性特征融合(PLEGDF-FGLSCF)的抑郁强度识别深度模型。首先,设计了全局抑郁特征局部感知力增强(PLEGDF)模块,用于提取面部局部区域之间的语义相关性信息,促进不同局部区域与抑郁相关的信息之间的交互,从而增强局部抑郁特征驱动的全局抑郁特征表达力。然后,提出了全局-局部语义相关性特征融合(FGLSCF)模块,用于捕捉全局和局部语义信息之间的关联性,实现全局和局部抑郁特征之间的语义一致性描述。最后,在AVEC2013和AVEC2014数据集上,利用PLEGDF-FGLSCF模型获得的识别结果在均方根误差(RMSE)和平均绝对误差(MAE)指标上的值分别是7.75/5.96和7.49/5.99,优于大多数已有的基准模型,证实了该方法的合理性和有效性。 展开更多
关键词 抑郁强度 人脸图像 局部感知力增强 全局局部特征融合 语义一致性
在线阅读 下载PDF
基于声阵列时空关联特征融合的不平衡局部放电类型识别方法 被引量:6
9
作者 王红霞 王波 +3 位作者 张嘉鑫 尚宇炜 周莉梅 刘畅 《高电压技术》 EI CAS CSCD 北大核心 2024年第5期1913-1922,共10页
麦克风阵列能非接触且灵活地对电力设备局部放电现象进行检测,但现有方法对麦克风阵列的数据特点考虑不足,对局放类型识别的研究不足。针对麦克风阵列数据的关联性特征和不平衡分布特点,首先对麦克风阵列数据的时间关联性和空间关联性... 麦克风阵列能非接触且灵活地对电力设备局部放电现象进行检测,但现有方法对麦克风阵列的数据特点考虑不足,对局放类型识别的研究不足。针对麦克风阵列数据的关联性特征和不平衡分布特点,首先对麦克风阵列数据的时间关联性和空间关联性特征进行深入分析。然后,以1维卷积神经网络和压缩-激活关联性挖掘方法为基础,提出基于时空关联特征融合的声阵列数据局部放电类型识别模型。最后,针对麦克风阵列数据类别间分布不平衡问题,使用损失函数调整法和数据分布调整法进行应对。仿真结果表明:相对不考虑关联性的方法,该文所提方法的精确率、召回率提升均大于12%;相对不考虑样本不均衡性方法,该文所用方法在精确率和召回率均提高大于60%,验证了基于声阵列数据的局放类型识别中考虑数据关联性和不平衡性的必要性。 展开更多
关键词 声阵列 局部放电 时空关联性 特征融合 不平衡数据
在线阅读 下载PDF
融合全局增强-局部注意特征的表情识别网络 被引量:3
10
作者 刘娟 王颖 +1 位作者 胡敏 黄忠 《计算机科学与探索》 CSCD 北大核心 2024年第9期2487-2500,共14页
为抑制自然场景下遮挡和姿态变化等因素对人脸表情识别的影响,提出一种融合全局增强-局部注意特征(GE-LA)的表情识别网络。为获取增强的全局上下文信息,构建通道-空间全局特征增强结构,该结构采用通道流模块(CFM)和空间流模块(SFM),分... 为抑制自然场景下遮挡和姿态变化等因素对人脸表情识别的影响,提出一种融合全局增强-局部注意特征(GE-LA)的表情识别网络。为获取增强的全局上下文信息,构建通道-空间全局特征增强结构,该结构采用通道流模块(CFM)和空间流模块(SFM),分别获取对称多尺度通道语义以及像素级空间语义,并结合两类语义生成全局增强特征;为抽取局部细节特征,将高效通道注意力(ECA)机制改进为通道-空间注意力(CSA)机制,并以此构建局部注意模块(LAM)获取通道和空间高级语义。为提升网络对遮挡、姿态变化等因素的抗干扰能力,设计一种自适应策略实现全局增强特征和局部注意特征的加权融合,并基于自适应融合特征实现表情分类。在自然场景人脸表情数据集RAF-DB和FERPlus上的实验结果表明,提出网络的表情识别率分别为89.82%和89.93%,比基线网络ResNet50分别提高了13.39个百分点和10.62个百分点。与相关方法相比,提出方法降低了遮挡、姿态变化的影响,在自然场景下具有较好的表情识别效果。 展开更多
关键词 人脸表情识别 全局增强特征 局部注意特征 自适应融合策略
在线阅读 下载PDF
基于局部和全局特征融合的二阶段人脸图像修复算法研究 被引量:2
11
作者 徐克 《现代电子技术》 北大核心 2024年第9期40-46,共7页
针对大面积不规则破损的人脸图像修复过程中出现的伪影和不连贯问题,提出一种基于特征融合和多尺度注意力机制的二阶段人脸图像修复算法。在粗修复网络增加全局和局部特征分支来处理编码器的输出。其中,局部特征分支使用多尺度空洞卷积... 针对大面积不规则破损的人脸图像修复过程中出现的伪影和不连贯问题,提出一种基于特征融合和多尺度注意力机制的二阶段人脸图像修复算法。在粗修复网络增加全局和局部特征分支来处理编码器的输出。其中,局部特征分支使用多尺度空洞卷积和门控残差连接来聚合上下文信息,并与全局特征分支的输出进行正交融合,提高局部特征与全局特征的相关性,减少特征冗余。在精修复网络增加平均和最大金字塔池化模块,其中,平均池化用于捕捉整体统计信息,最大池化用于提取空间上显著的特征并保留关键信息,并利用通道⁃空间注意力机制进行图像特征结构调整和纹理生成。最后,构建了一个包括多尺度结构相似性损失的复合函数对网络进行训练。实验结果表明,所提算法在主观和客观评价指标上均优于现有算法。 展开更多
关键词 全局特征 局部特征 正交融合 金字塔池化 CBAM 多尺度特征融合 人脸图像修复
在线阅读 下载PDF
全局-局部特征融合的人体姿态估计算法
12
作者 毛琳 任春贺 杨大伟 《电子测量技术》 北大核心 2024年第10期115-125,共11页
针对现有人体姿态估计算法存在因骨干网络特征提取不充分,导致关键点特征信息丢失的问题,提出一种结合全局-局部特征融合模块的人体姿态估计网络模型(GLF-Net)。为了在特征提取阶段获得高质量的特征图,该算法从全局特征和局部特征出发,... 针对现有人体姿态估计算法存在因骨干网络特征提取不充分,导致关键点特征信息丢失的问题,提出一种结合全局-局部特征融合模块的人体姿态估计网络模型(GLF-Net)。为了在特征提取阶段获得高质量的特征图,该算法从全局特征和局部特征出发,对骨干网络ResNet-50进行改进,分别设计了全局极化自注意力模块和局部深度可分离卷积模块。同时采用并行的结构方式将融合了全局位置信息和局部语义信息特征的模块嵌入到骨干网络的Bottleneck层中,既能增强原骨干网络的特征提取能力,又为后续的Transformer网络提供有效的全局和局部特征输入,进而提高姿态关键点检测的性能。在公开人体姿态估计数据集COCO 2017上和MPII数据集上分别进行模型测试,该算法性能与与基准算法(Poseur)相比,姿态关键点的平均准确度(AP)提升了2.1%,平均召回率(AR)提升了1.5%,正确估计关键点比例(PCKh@0.5)最高达到90.6。实验结果表明,所提算法在姿态估计精度上优于现存同类方法,可以明显提高人体姿态关键点的定位准确度。 展开更多
关键词 人体姿态估计 特征提取 全局极化自注意力 局部深度可分离卷积 全局-局部特征融合
在线阅读 下载PDF
时空特征强化与感知的视觉目标跟踪方法 被引量:1
13
作者 郭虎升 刘正琪 +1 位作者 刘艳杰 王文剑 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期60-70,共11页
多数基于Transformer的目标跟踪模型提取的目标局部空间特征信息有限且时间特征利用不足,显著影响了目标跟踪模型在处理目标遮挡、形变或尺度变化等复杂场景下的性能。为此,提出一种时空特征强化与感知的视觉目标跟踪方法(visual object... 多数基于Transformer的目标跟踪模型提取的目标局部空间特征信息有限且时间特征利用不足,显著影响了目标跟踪模型在处理目标遮挡、形变或尺度变化等复杂场景下的性能。为此,提出一种时空特征强化与感知的视觉目标跟踪方法(visual object tracking method with spatial-temporal feature enhancement and perception,STFEP)。一方面,该方法使用Transformer进行搜索区域与时间上下文特征的提取与融合,以得到全局特征信息,通过设计的局部卷积神经网络,提取目标的局部特征信息,并与目标的全局特征信息相关联,进一步强化目标的特征表示。另一方面,提出了时空特征感知机制,对不同时刻的特征信息进行可靠性和必要性分析,构建动态模板以感知更丰富的时空信息,使模型适应目标及场景的复杂变化。在TrackingNet、GOT-10k、LaSOT、UAV123多个数据集上的实验结果表明,研究所提方法能够准确鲁棒的对目标进行跟踪,并在GOT-10k数据集上取得了最优的结果,AO、SR 0.5以及SR 0.75分别达到了73.7%、83.8%、70.6%。 展开更多
关键词 视觉目标跟踪 时空特征强化 全局-局部信息关联 时空特征感知 动态模板
在线阅读 下载PDF
基于特征融合和网络采样的点云配准 被引量:1
14
作者 陆军 王文豪 杜宏劲 《智能系统学报》 北大核心 2025年第3期621-630,共10页
针对点云配准过程中,下采样时容易丢失关键点、影响配准精度的问题,本文提出一种基于特征融合和网络采样的配准方法,提高了配准的精度和速度。在PointNet分类网络基础上,引入小型注意力机制,设计一种基于深度学习网络的关键点提取方法,... 针对点云配准过程中,下采样时容易丢失关键点、影响配准精度的问题,本文提出一种基于特征融合和网络采样的配准方法,提高了配准的精度和速度。在PointNet分类网络基础上,引入小型注意力机制,设计一种基于深度学习网络的关键点提取方法,将局部特征和全局特征融合,得到混合特征的特征矩阵。通过深度学习实现对应矩阵求解中相关参数的自动优化,最后利用加权奇异值分解(singular value decomposition,SVD)得到变换矩阵,完成配准。在ModelNet40数据集上的实验表明,和最远点采样相比,所提算法耗时减少45.36%;而配准结果和基于特征学习的鲁棒点匹配(robust point matching using learned features,RPM-Net)相比,平移矩阵均方误差降低5.67%,旋转矩阵均方误差降低13.1%。在自制点云数据上的实验,证实了算法在真实物体上配准的有效性。 展开更多
关键词 点云配准 特征融合 深度学习 网络采样 三维视觉 局部特征 全局特征 特征提取
在线阅读 下载PDF
结合CNN-Transformer特征交互的红外与可见光图像融合方法
15
作者 张德银 张裕尧 +1 位作者 李俊佟 吴章辉 《红外技术》 北大核心 2025年第7期813-822,共10页
针对CNN与Transformer提取的特征之间交互作用未充分挖掘而导致的融合图像易产生红外特征分布不均匀、轮廓不清晰以及重要背景信息丢失等问题,本文提出了一种新的结合CNN-Transformer特征交互的红外与可见光图像融合网络。首先,新融合... 针对CNN与Transformer提取的特征之间交互作用未充分挖掘而导致的融合图像易产生红外特征分布不均匀、轮廓不清晰以及重要背景信息丢失等问题,本文提出了一种新的结合CNN-Transformer特征交互的红外与可见光图像融合网络。首先,新融合网络设计了新的空间通道混合注意力机制以提升全局及局部特征的提取效率并得到混合特征块;其次,利用CNN-Transformer的特征交互获取融合混合特征块,并构建多尺度重构网络以实现图像特征重构输出;最后,使用TNO数据集将新融合网络与其它9种融合网络进行对比图像融合实验。实验结果表明,新融合网络获得的融合图像在视觉感知方面表现优异,既突出了红外特征和物体轮廓,又保留了丰富的背景纹理细节;网络在EN、SD、AG、SF、SCD以及VIF指标上相较于现有融合网络平均提高约64.73%、8.17%、69.05%、66.34%、15.39%和25.66%。消融实验证明了新模型的有效性。 展开更多
关键词 CNN-Transformer特征交互 全局特征 混合注意力 图像融合 局部特征
在线阅读 下载PDF
融合局部与全局特征的人体动作识别 被引量:6
16
作者 唐超 张苗辉 +3 位作者 李伟 曹峰 王晓峰 童晓红 《系统仿真学报》 CAS CSCD 北大核心 2018年第7期2497-2506,2514,共11页
根据视频特征来识别人体行为是一个具有广泛应用的重要研究课题。提出了一种鲁棒性强,抗噪性能优的人体运动目标检测方法和一种简单高效的多信息融合的混合行为特征表示方法和相应的识别算法。该混合行为特征具有简单、鲁棒和判别能力... 根据视频特征来识别人体行为是一个具有广泛应用的重要研究课题。提出了一种鲁棒性强,抗噪性能优的人体运动目标检测方法和一种简单高效的多信息融合的混合行为特征表示方法和相应的识别算法。该混合行为特征具有简单、鲁棒和判别能力强的特点,它融合了基于中心距的时空兴趣点局部特征和基于曲率函数的傅里叶描述子全局特征,利用泛化能力较强的随机森林模型进行快速分类。实验结果表明,该方法具有简单、快速和高效的特点。 展开更多
关键词 人体行为识别 局部特征 全局特征 时空兴趣点 傅里叶描述子 随机森林
在线阅读 下载PDF
融合局部特征和全局特征的手指静脉识别方法 被引量:6
17
作者 杨颖 尹义龙 +1 位作者 杨公平 袭肖明 《计算机工程与应用》 CSCD 2012年第14期158-162,共5页
手指静脉识别是利用人体手指静脉结构的唯一性实现个体身份认证,具有高度安全和使用便捷等优点。为了进一步提高手指静脉识别系统的性能,提出了一种融合局部特征和全局特征的手指静脉识别方法。应用局部二元模式方法提取手指静脉局部特... 手指静脉识别是利用人体手指静脉结构的唯一性实现个体身份认证,具有高度安全和使用便捷等优点。为了进一步提高手指静脉识别系统的性能,提出了一种融合局部特征和全局特征的手指静脉识别方法。应用局部二元模式方法提取手指静脉局部特征,利用海明距离计算匹配得分;应用双向两维主成分分析方法提取手指静脉全局特征,利用欧式距离计算匹配得分;在得分级上融合二者的匹配得分以产生识别结果。实验结果表明,局部特征与全局特征具有较好的互补性,有效地提高了识别精度。 展开更多
关键词 手指静脉识别 局部特征 全局特征 得分融合
在线阅读 下载PDF
融合全局与局部特征的贝叶斯人脸识别方法 被引量:5
18
作者 王刚 牛宏侠 《计算机工程与应用》 CSCD 北大核心 2019年第11期172-178,共7页
针对人脸识别特征提取阶段中的数据降维方法往往难以兼顾保持全局与局部特征信息的问题,以及匹配识别阶段贝叶斯分类器中小样本问题,提出了一种融合全局与局部特征的贝叶斯人脸识别方法。该方法通过核主元分析提取出人脸数据的全局非线... 针对人脸识别特征提取阶段中的数据降维方法往往难以兼顾保持全局与局部特征信息的问题,以及匹配识别阶段贝叶斯分类器中小样本问题,提出了一种融合全局与局部特征的贝叶斯人脸识别方法。该方法通过核主元分析提取出人脸数据的全局非线性特征,并在此基础上通过正交化局部敏感判别分析挖掘出人脸数据的局部流形结构信息,以达到提取出具有高判别力低维本质人脸特征的目的;采用一种最大信息量协方差选择的方法,来对协方差矩阵进行估算,以解决贝叶斯分类器设计中的小样本问题。在ORL、AR、YALE、FLW人脸库上设计实验来进行验证。结果表明,提出的特征提取算法以及对贝叶斯分类器的改进取得了比较好的效果,通过对这两个阶段的优化,可以显著提升人脸识别的效果。 展开更多
关键词 人脸识别 全局特征 局部特征 特征融合 贝叶斯分类器
在线阅读 下载PDF
基于全局局部一致性的多特征融合目标跟踪 被引量:3
19
作者 徐艳 王培光 杨宁 《兵器装备工程学报》 CAS 北大核心 2020年第3期86-90,共5页
针对复杂环境下的目标跟踪问题,将基于归一化DPM直方图的粒子滤波与基于局部HSV+LBP融合特性的meanshift跟踪算法相结合,构建了全局局部一致性下的目标跟踪算法。该算法将鲁棒性较强的全局颜色信息与局部纹理信息相结合,构建权重可调的... 针对复杂环境下的目标跟踪问题,将基于归一化DPM直方图的粒子滤波与基于局部HSV+LBP融合特性的meanshift跟踪算法相结合,构建了全局局部一致性下的目标跟踪算法。该算法将鲁棒性较强的全局颜色信息与局部纹理信息相结合,构建权重可调的全局局部状态估计模型,从而得到目标当前状态。实验结果表明:该算法能够较好的处理目标跟踪常见的遮挡、干扰、目标快速移动等情况,最终实现对目标的稳定跟踪。 展开更多
关键词 粒子滤波 融合特征 全局局部一致性 二次定位 特征
在线阅读 下载PDF
掩模特征融合:实例分割新范式
20
作者 李伟康 张思全 《计算机工程》 北大核心 2025年第2期126-138,共13页
实例分割任务是视觉场景理解的基本任务之一,现有的算法具有一定的相似性,通过梳理现有算法中的共通性与差异性,抽象出一种新颖的实例分割范式:掩模特征融合(MFF)。该范式将实例分割任务分为语义无关的掩模特征提取、语义相关的序列提... 实例分割任务是视觉场景理解的基本任务之一,现有的算法具有一定的相似性,通过梳理现有算法中的共通性与差异性,抽象出一种新颖的实例分割范式:掩模特征融合(MFF)。该范式将实例分割任务分为语义无关的掩模特征提取、语义相关的序列提取以及序列特征和掩模特征融合3个模块。进一步,根据新范式的结构特性提出2项优化。首先,通过设计一个非局部全局偏置增强骨干网络对全局信息的关注,使掩模特征提取模块在网络浅层可以提取到全局的信息,并且消除预训练权重带来的数据集固有偏置。其次,实验过程中观察到一些Transformer模型在训练初期出现查询向量不稳定的现象,即多数查询向量的感兴趣区域(ROI)在每次交叉注意力操作后会发生漂移现象。为了解决查询向量漂移的问题,针对序列提取模块提出一种去噪训练的方法,保证查询向量的注意力在训练前期就可以保持在同一区域,从而加速Transformer解码器的收敛,并在其他参数配置相同的情况下提高模型精度。实验结果证明了上述改进的有效性。在MS-COCO2017数据集上的实例分割任务中,相比MMF范式的基础模型,增加了新的改进措施后,模型在掩模平均精度均值(mAP)指标上取得了5.0%的显著性能提升。 展开更多
关键词 实例分割范式 掩模特征融合 局部全局偏置 去噪训练 查询向量漂移
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部