期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
双注意力随机选择全局上下文细粒度识别网络
1
作者 徐胜军 荆扬 +3 位作者 段中兴 李明海 李海涛 刘福友 《液晶与显示》 CAS CSCD 北大核心 2024年第4期506-521,共16页
针对细粒度图像识别任务中易忽视微小潜在性特征且外观差异细微等问题,提出一种基于双注意力随机选择全局上下文细粒度识别网络。首先,使用ConvNeXt作为主干网络,提出双注意力随机选择模块,对不同阶段提取到的特征进行通道随机选择和空... 针对细粒度图像识别任务中易忽视微小潜在性特征且外观差异细微等问题,提出一种基于双注意力随机选择全局上下文细粒度识别网络。首先,使用ConvNeXt作为主干网络,提出双注意力随机选择模块,对不同阶段提取到的特征进行通道随机选择和空间随机选择,使网络能够关注到其他潜在微小判别性特征;其次,利用全局上下文注意力模块将深层特征的语义信息融合到中间层,增强中间层定位微小特征的能力;最后,提出一种多分支损失,对中间层、深层和拼接层特征引入分类损失,结合不同分支提取到的特征,诱导网络获得多样性的判别特征。所提网络在Stanford-cars、CUB-200-2011、FGVC-Aircraft 3个公开细粒度数据集和真实场景下车型数据集VMRURS上分别达到了95.2%、92.1%、94.0%和97.0%的识别准确率,其性能相比其他对比方法有较大幅度提升。 展开更多
关键词 细粒度识别 ConvNeXt 注意力随机选择 全局上下文注意力 多分支损失
在线阅读 下载PDF
融合全局上下文注意力的遥感图像检测方法 被引量:1
2
作者 廖欢 朱文球 +1 位作者 雷源毅 徐轲 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第2期278-283,共6页
针对遥感图像场景复杂、目标尺寸不一、且小尺寸目标过多导致的检测精度不佳和出现漏检等问题,提出了一种融合全局上下文注意力的目标检测算法。该算法提出一种全局上下文注意力机制和YOLOv5中C3结构融合的模块,以提升网络捕捉图像全局... 针对遥感图像场景复杂、目标尺寸不一、且小尺寸目标过多导致的检测精度不佳和出现漏检等问题,提出了一种融合全局上下文注意力的目标检测算法。该算法提出一种全局上下文注意力机制和YOLOv5中C3结构融合的模块,以提升网络捕捉图像全局特征的能力;通过Varifocal Loss损失函数来提升对密集、尺寸小的目标的检测性能;采用基于归一化的注意力模块,降低图像中不太显著的特征和权重,使网络能够达到更高的检测准确率;利用动态卷积学习各个维度的信息,让训练得到的模型在降低GFLOPs情况下,同时保持检测精度提升。在NWPU VHR-10数据集上实验结果mAP为96.0%、准确率为98.2%、召回率为94.9%,较原YOLOv5模型分别提升了1.8%、4.7%和2.2%,证明了所改进YOLOv5方法的有效性。 展开更多
关键词 YOLOv5 遥感图像 Varifocal Loss 全局上下文注意力机制 动态卷积
在线阅读 下载PDF
引入全局上下文模块和高效注意力机制的车辆跟踪算法 被引量:5
3
作者 李畅 王一丁 +1 位作者 孙芮 何忠贺 《科学技术与工程》 北大核心 2022年第11期4424-4433,共10页
孪生全卷积神经网络目标跟踪算法(SiamFC)近些年成为车辆跟踪领域的研究热点。但该算法缺乏对目标车辆的深层特征提取和整体感知,在背景复杂、低分辨率、光照变化的情况下容易跟丢。提出使用深度残差网络ResNet50作为主干网络,根据跟踪... 孪生全卷积神经网络目标跟踪算法(SiamFC)近些年成为车辆跟踪领域的研究热点。但该算法缺乏对目标车辆的深层特征提取和整体感知,在背景复杂、低分辨率、光照变化的情况下容易跟丢。提出使用深度残差网络ResNet50作为主干网络,根据跟踪模型特性,从剪裁特征图、调整网络总步长和嵌入高效通道注意力模块三方面对其进行优化,高效提取特征的同时增强模型的差异化认知,并在分支网络引入全局上下文模块(non-local network,NLNet),增强跟踪模型对目标车辆的整体感知。经实验证明,提出的算法在低分辨率、光照变化和复杂背景的情况下跟踪速度和鲁棒性显著提升。在VOT2018和OTB2015数据集中测试均能得到较好的跟踪结果,与经典跟踪模型SiamFC相比,在OTB2015数据集中测试的跟踪精度提高了5.5%,跟踪成功率提高了2.7%,跟踪速度提高了14%可达98帧/s。 展开更多
关键词 孪生神经网络 车辆跟踪 高效注意力模块 全局上下文模块
在线阅读 下载PDF
基于SE注意力机制与互信息量的解纠缠跨语种语音转换
4
作者 李燕萍 谭誌诚 +2 位作者 胡澄阳 杨露露 邵曦 《信号处理》 北大核心 2025年第1期183-192,共10页
在跨语种语音转换(Cross-Lingual Voice Conversion, CLVC)任务中,如何保留转换语音中的内容信息,同时有效地提高转换语音的相似度和自然度是目前的研究难题。传统的编码器-解码器模型应用于跨语种语音转换时,通常会对语音进行相互独立... 在跨语种语音转换(Cross-Lingual Voice Conversion, CLVC)任务中,如何保留转换语音中的内容信息,同时有效地提高转换语音的相似度和自然度是目前的研究难题。传统的编码器-解码器模型应用于跨语种语音转换时,通常会对语音进行相互独立的内容编码和说话人编码,导致得到的内容表征和说话人表征之间存在一定的信息泄露,从而使得转换语音的说话人个性相似度不够理想。为了解决上述存在的问题,本文提出一种基于SE注意力机制(Squeeze-and-Excitation Attention Mechanism, SE)与互信息量(Mutual Information, MI)的跨语种语音转换方法,实现有效的表征解纠缠,完成开集情形下高质量的跨语种语音转换。首先,在内容编码器中引入SE注意力机制以利用其对全局信息的提取能力,使得内容编码器可以提取包含全局上下文信息的内容表征;同时,在各个表征之间引入互信息量,并通过对其最小化来大幅减少各个表征之间存在的信息泄露问题,从而实现有效的表征解纠缠。在VCTK英文语料库和AISHELL-3中文语料库上的实验结果表明,本文提出的基于SE注意力机制与互信息量的跨语种语音转换模型(Squeeze-and-Excitation Attention Mechanism and Mutual Information, SEMI)具有更强的表征提取能力,相比于基准模型,其在客观评价中MCD值降低了10.89%,在主观评价中MOS值和ABX值分别提升了10.94%和12.06%,验证了SEMI模型在转换语音质量和说话人个性相似度方面都取得显著进展,实现了开集情形下高质量的跨语种语音转换。 展开更多
关键词 跨语种语音转换 SE注意力机制 互信息量 全局上下文信息
在线阅读 下载PDF
基于全局上下文注意力的点云语义分割 被引量:1
5
作者 侯伟鹏 王蕾 《现代电子技术》 2023年第9期120-125,共6页
点云语义分割是三维环境感知的基础,直接基于点的语义分割方法避免了因点云结构化处理所造成的信息损失,但大多数深度学习模型的研究主要集中在提取局部几何特征,没有考虑点云不同局部结构之间的上下文关系,并且忽略了低级与高级特征之... 点云语义分割是三维环境感知的基础,直接基于点的语义分割方法避免了因点云结构化处理所造成的信息损失,但大多数深度学习模型的研究主要集中在提取局部几何特征,没有考虑点云不同局部结构之间的上下文关系,并且忽略了低级与高级特征之间的语义差距,限制了特征表示的能力,影响了点云语义分割的精度。因此,文中提出一种基于全局上下文注意力的点云语义分割方法,该方法主要由基于外部注意力的全局上下文特征聚合和基于后向竞争性注意力的邻近尺度特征融合两部分组成。通过外部注意力学习不同局部结构之间的长距离依赖关系,从而获得丰富的全局上下文信息。为了进一步增强模型的上下文感知能力,设计基于后向竞争性注意力的邻近尺度特征融合模块,学习低级与高级语义特征之间的相似度,重新为中间特征通道分配权重。在S3DIS大规模室内点云数据集上对所提方法进行评估,结果表明,所提方法的平均交并比在Area5上达到了65.2%,相比于RandLA-Net提高了2.5%,在6折交叉验证上的平均交并比达到了71.4%,相比于RandLA-Net提高了1.4%。证明了所提方法能够有效提取全局上下文特征,提高了语义分割的精度。 展开更多
关键词 点云语义分割 全局上下文特征 邻近尺度 外部注意力 后向竞争性注意力 平均交并比
在线阅读 下载PDF
基于全局上下文和注意力机制深度卷积神经网络的地震数据去噪 被引量:16
6
作者 杨翠倩 周亚同 +2 位作者 何昊 崔焘 王杨 《石油物探》 CSCD 北大核心 2021年第5期751-762,855,共13页
在地震数据处理中,随机噪声压制是提高地震数据信噪比的关键。针对目前卷积神经网络大多关注局部特征以及在特征提取方面的局限性,提出了一种结合全局上下文和注意力机制的深度卷积神经网络(global context and attention-based deep co... 在地震数据处理中,随机噪声压制是提高地震数据信噪比的关键。针对目前卷积神经网络大多关注局部特征以及在特征提取方面的局限性,提出了一种结合全局上下文和注意力机制的深度卷积神经网络(global context and attention-based deep convolutional neural network,GC-ADNet),并用残差学习压制地震数据随机噪声的方法。其中,全局上下文模块(global context block,GCBlock)既关注局部信息,又能提取全局上下文信息;注意力模块(Attention Block)不仅强调关键特征,还能高效提取隐藏在复杂背景中的噪声信息。加入残差学习和批量规范化方法加快了网络的训练和收敛速度,使用扩张卷积扩大上下文信息并降低计算成本。将GC-ADNet应用于合成和实际地震数据处理,并与现有的去噪方法进行了比较。实验结果表明,GC-ADNet能够更有效压制随机噪声,并保留更多局部细节信息。 展开更多
关键词 地震数据 全局上下文 注意力机制 噪声压制 深度卷积神经网络
在线阅读 下载PDF
基于上下文空间感知的遥感图像旋转目标检测 被引量:2
7
作者 雷帮军 朱涵 《电光与控制》 北大核心 2025年第3期69-75,共7页
遥感图像处理旋转目标检测任务存在尺度变化大、背景复杂、目标方向任意的特点,给自动目标检测带来了挑战。针对上述问题,结合YOLOv5s检测器,提出了基于上下文空间感知的旋转目标检测框架。首先,设计了上下文空间感知模块(CSPM)构造主... 遥感图像处理旋转目标检测任务存在尺度变化大、背景复杂、目标方向任意的特点,给自动目标检测带来了挑战。针对上述问题,结合YOLOv5s检测器,提出了基于上下文空间感知的旋转目标检测框架。首先,设计了上下文空间感知模块(CSPM)构造主干网络,获取更全面的局部上下文信息与全局空间感知信息,解决网络模型对多尺度目标的特征提取能力不足的问题;其次,在特征融合部分引入无参数注意力机制SimAM,基于神经元抑制原理自适应融合重要信息,解决模型在复杂背景下的误检和漏检问题;最后,增加角度参数回归旋转目标方向,解决任意方向目标回归的问题,同时采用GWDL(Gaussian Wasserstein Distance Loss)计算旋转框损失,参数联合优化,提升检测精度。提出的目标检测算法在HRSC2016数据集上的Recall、Precision和mAP_(50)分别达到了0.955、0.916、0.904,具有最优的检测效果,同时检测速度达到了140.8帧/s,具有实时性。 展开更多
关键词 遥感图像 上下文模块 注意力机制 旋转目标检测
在线阅读 下载PDF
基于全局与局部多尺度上下文的电表数据检测
8
作者 马天磊 符俊 +2 位作者 马琪 杨震 刘新浩 《应用光学》 CAS 北大核心 2024年第4期804-811,共8页
电力系统中配电箱的电表数据检测为电力管理和安全运行提供了重要的数据支持。传统的人工电表数据读取方法效率低下且易出错,而现有深度学习方法因模型参数量大限制了模型的应用。针对上述问题,提出了一种轻量化鲁棒的实时电表检测方法... 电力系统中配电箱的电表数据检测为电力管理和安全运行提供了重要的数据支持。传统的人工电表数据读取方法效率低下且易出错,而现有深度学习方法因模型参数量大限制了模型的应用。针对上述问题,提出了一种轻量化鲁棒的实时电表检测方法。通过减少特征提取网络的层数和通道数,减少模型的参数量,实现网络的轻量化。在减少网络参数量的同时,为了保证网络的特征表达能力和拟合能力,引入全局上下文和局部多尺度上下文丰富目标特征表达。全局上下文关注电表数据在电表箱中的位置,局部多尺度上下文适应不同尺寸的电表数据。实验结果表明,所提网络在参数量更小的情况下,仍能获得比其他检测方法更高的准确率和更快的检测速度。 展开更多
关键词 电表数据检测 全局上下文 局部上下文 深度学习 注意力机制
在线阅读 下载PDF
一种融合上下文语义信息与边缘特征的海陆分割方法
9
作者 文甜甜 普运伟 赵文翔 《自然资源遥感》 北大核心 2025年第5期62-72,共11页
由于在环境错综复杂、地物信息丰富的光学遥感图像中进行海陆分割时会出现定位精度低和边缘模糊的问题,因此文章提出一种融合上下文语义信息与边缘特征的深度卷积网络模型与海陆分割方法。首先利用FusionNet语义分割网络模块提取遥感图... 由于在环境错综复杂、地物信息丰富的光学遥感图像中进行海陆分割时会出现定位精度低和边缘模糊的问题,因此文章提出一种融合上下文语义信息与边缘特征的深度卷积网络模型与海陆分割方法。首先利用FusionNet语义分割网络模块提取遥感图像中丰富的目标语义信息;然后利用改进的空洞空间金字塔池化模块(atrous spatial pyramid pooling,ASPP)和上下文注意力模块从分割网络中提取不同尺度和层次的上下文语义特征,并构建边缘提取子网络获取多尺度边缘特征;最后通过融合模块对语义特征和边缘特征进行组合,实现海陆精准分割。在2个典型数据集上的测试结果表明,该文方法的整体预测正确率、F1分数以及边界F1分数分别达到了98.21%,97.64%,89.36%和96.09%,95.67%,86.13%,均显著优于其他对比模型。特别是在复杂背景下,该方法可有效提高分割和边缘检测的准确性,对人工岸线和港口的分割具有明显优势。 展开更多
关键词 海陆分割 边缘提取 语义分割 多任务学习 上下文注意力模块
在线阅读 下载PDF
顾及多尺度特征及全局上下文的建筑提取方法 被引量:1
10
作者 廖子阳 冯德俊 +1 位作者 陈虹宇 刘子琛 《遥感信息》 CSCD 北大核心 2024年第2期118-126,共9页
针对语义分割提取建筑物时,在特征提取过程中丢失局部细节信息,对全局上下文信息的感知能力及多尺度特征的提取不足,导致小建筑物漏提、建筑物提取不完整及内部孔洞的问题,提出了顾及多尺度特征及全局上文信息的建筑物提取方法。该方法... 针对语义分割提取建筑物时,在特征提取过程中丢失局部细节信息,对全局上下文信息的感知能力及多尺度特征的提取不足,导致小建筑物漏提、建筑物提取不完整及内部孔洞的问题,提出了顾及多尺度特征及全局上文信息的建筑物提取方法。该方法采用编码-解码结构,利用并行的连续空洞卷积提取多尺度特征,并行使用压缩激励模块(SE)和条带池化模块(SPM)从通道和空间维度捕获全局上下文信息,提高网络对小建筑物的识别能力及提取结果的完整性,并减少内部孔洞。通过在WHU建筑数据集和Inria航空数据集上与常见的语义分割网络进行的对比实验表明,该方法在提高建筑物提取准确率的同时,较好地解决了小建筑物漏提、建筑物提取不完整及内部孔洞等问题。 展开更多
关键词 语义分割 多尺度特征 全局上下文 空洞卷积 注意力机制 建筑物
在线阅读 下载PDF
基于全局补偿注意力机制的战场图像去雾方法 被引量:1
11
作者 林森 王金刚 高宏伟 《兵工学报》 EI CAS CSCD 北大核心 2024年第4期1344-1353,共10页
在现代化战争中,广泛利用图像等载体获取信息,但雾天环境下得到的图像不仅影响场景呈现,而且会掩盖重要特征。为提高雾天图像在现代化战争的利用价值,提出一种基于全局补偿注意力机制的战场图像去雾方法。构建全局补偿模块保证输出图像... 在现代化战争中,广泛利用图像等载体获取信息,但雾天环境下得到的图像不仅影响场景呈现,而且会掩盖重要特征。为提高雾天图像在现代化战争的利用价值,提出一种基于全局补偿注意力机制的战场图像去雾方法。构建全局补偿模块保证输出图像的完整性,并加入通道下采样恢复清晰图像;使用密集残差模块学习退化图像和清晰图像的非线性映射,同时加入注意力机制提高网络的灵活处理能力;通过提升输入图像的通道数量确保网络充分学习特征信息。实验结果表明,与经典和新颖图像去雾方法比较,所提方法在主观和客观评价上均取得出色成绩,说明该方法将注意力机制和全局补偿模块充分结合,有效缓解了战场图像退化问题,同时注重特征增强,使信息得以完整呈现,具有更优越的性能。 展开更多
关键词 战场图像去雾 全局补偿 注意力机制 密集残差模块
在线阅读 下载PDF
融合动态场景感知和注意力机制的声学回声消除算法
12
作者 许春冬 黄乔月 +1 位作者 王磊 徐锦武 《信号处理》 CSCD 北大核心 2024年第2期396-405,共10页
在实时语音频通话系统中,如何去除声学回声得到清晰语音是目前最受关注的难题之一。声学回声消除(Acoustic echo cancellation,AEC)技术旨在消除语音频通话系统中的声学回声,提高通话过程中的语音质量,给予用户良好的通话体验,但是传统... 在实时语音频通话系统中,如何去除声学回声得到清晰语音是目前最受关注的难题之一。声学回声消除(Acoustic echo cancellation,AEC)技术旨在消除语音频通话系统中的声学回声,提高通话过程中的语音质量,给予用户良好的通话体验,但是传统回声消除系统存在去回声效果不明显、存在非线性回声残留以及无法实时处理回声等问题。因此,为解决上述存在问题,提出了一种动态场景感知模块(Dynamic scene perception module,DSPM)和全局注意力机制(Global attention mechanism,GAM)相结合的声学回声消除算法。该算法以卷积循环网络(Convolutional recurrent network,CRN)作为基线模型,提取语音信号的序列特征;首先,在其编码器中引入DSPM模块替换原因果卷积,根据场景动态分配卷积内核数量,加强模型的自适应性;其次,在编码器最后两层中分别引入GAM模块,放大空间通道间关系以及统筹全局交互,提升对语音信号特征的提取能力以及消除回声的性能;最后,通过将MSE损失函数和HuberLoss损失函数线性相加生成一种新的损失函数——MSE-HuberLoss,进一步提高模型的鲁棒性。实验结果表明,提出的GAM-DSPM-CRN模型的回声消除性能优秀,且获得较基线模型更加清晰的重构语音信号;在双端通话环境下,提出的GAM-DSPM-CRN模型声学回声消除算法较其他对比算法性能有较大提升;在Microsoft AEC Challenges数据集上,MOS、ERLE和STOI的得分分别达到了4.09、57.43和0.78。 展开更多
关键词 声学回声消除 动态场景感知模块 全局注意力机制 卷积循环网络 联合损失函数
在线阅读 下载PDF
基于多尺度上下文的英文作文自动评分研究 被引量:4
13
作者 于明诚 党亚固 +2 位作者 吴奇林 吉旭 毕可鑫 《计算机工程》 CAS CSCD 北大核心 2024年第3期259-266,共8页
目前作文自动评分模型缺乏对不同尺度上下文语义特征的提取,未能从句子级别计算与作文主题关联程度的特征。提出基于多尺度上下文的英文作文自动评分研究方法MSC。采用XLNet英文预训练模型提取原始作文文本单词嵌入和句嵌入,避免在处理... 目前作文自动评分模型缺乏对不同尺度上下文语义特征的提取,未能从句子级别计算与作文主题关联程度的特征。提出基于多尺度上下文的英文作文自动评分研究方法MSC。采用XLNet英文预训练模型提取原始作文文本单词嵌入和句嵌入,避免在处理长序列文本时无法准确捕捉到符合上下文语境的向量嵌入,提升动态向量语义表征质量,解决一词多义问题,并通过一维卷积模块提取不同尺度的短语级别嵌入。多尺度上下文网络通过结合内置自注意力简单循环单元和全局注意力机制,分别捕捉单词、短语和句子级别的作文高维潜在上下文语义关联关系,利用句向量与作文主题计算语义相似度提取篇章主题层次特征,将所有特征输入融合层通过线性层得到自动评分结果。在公开的标准英文作文评分数据集ASAP上的实验结果表明,MSC模型平均二次加权的Kappa值达到了80.5%,且在多个子集上取得了最佳效果,优于实验对比的深度学习自动评分模型,证明了MSC在英文作文自动评分任务上的有效性。 展开更多
关键词 英文作文自动评分 预训练模型 多尺度上下文 全局注意力 主题层次特征
在线阅读 下载PDF
基于Bert-GNNs异质图注意力网络的早期谣言检测 被引量:5
14
作者 欧阳祺 陈鸿昶 +2 位作者 刘树新 王凯 李星 《电子学报》 EI CAS CSCD 北大核心 2024年第1期311-323,共13页
网络谣言的广泛传播已经造成了很大的社会危害,因此早期谣言检测任务已成为重要的研究热点.现有谣言检测方法主要从文本内容、用户配置和传播结构中挖掘相关特征,但没有同时利用到文本全局语义关系和局部上下文语义关系.为了克服以上局... 网络谣言的广泛传播已经造成了很大的社会危害,因此早期谣言检测任务已成为重要的研究热点.现有谣言检测方法主要从文本内容、用户配置和传播结构中挖掘相关特征,但没有同时利用到文本全局语义关系和局部上下文语义关系.为了克服以上局限性,充分利用到谣言数据中的文本全局-局部上下文语义关系、文本语义内容特征和推文传播的结构特征,本文提出了一种基于Bert-GNNs异质图注意力网络的早期谣言检测算法(Bert-GNNs Heterogeneous Graph Attention Network,BGHGAN).该方法根据历史谣言集和用户特征构建一个推文-词-用户异质图,通过采用预训练语言模型Bert和图卷积神经网络(Graph Convolutional Network,GCN)结合的方法进行特征学习,以挖掘谣言的文本语义特征和文本之间的关系,并将异质图分解为推文-词子图和推文-用户子图,采用图注意力网络(Graph Attention network,GAT)的方式分别进行特征学习,从而更充分利用文本全局-局部上下文语义关系和传播图的全局结构关系以加强特征表达;最后,通过子图级注意力机制将不同模块的学习集成进行最终的谣言检测.所提算法在真实的Twitter15和Twitter16数据上进行实验,验证了该算法在检测准确率上分别为91.4%和91.9%,较现有最佳模型分别提高了1%和1.4%,也具备在早期阶段对谣言的检测能力;同时,本文通过实验探讨了不同特征对谣言检测的重要性、对异质图构建质量的重要性. 展开更多
关键词 虚假谣言 Bert-GCN模块 子图注意力网络模块 全局语义关系 全局结构关系 局部上下文语义关系
在线阅读 下载PDF
基于高效全局上下文网络的轻量级烟火检测算法 被引量:3
15
作者 魏伦胜 徐望明 +1 位作者 张景元 陈彬 《液晶与显示》 CAS CSCD 北大核心 2023年第1期118-127,共10页
针对现有烟火检测算法存在的漏检和误检问题,提出一种基于高效全局上下文网络(EGC-Net)的轻量级烟火检测新算法。该算法以轻量级目标检测网络YOLOX为基础网络,将改进的EGC-Net嵌入到YOLOX的主干特征提取网络与特征金字塔网络之间。EGC-... 针对现有烟火检测算法存在的漏检和误检问题,提出一种基于高效全局上下文网络(EGC-Net)的轻量级烟火检测新算法。该算法以轻量级目标检测网络YOLOX为基础网络,将改进的EGC-Net嵌入到YOLOX的主干特征提取网络与特征金字塔网络之间。EGC-Net由上下文建模、特征转换和特征融合3阶段结构组成,用于获得图像的全局上下文信息,建模烟火目标与其背景信息的远程依赖关系,并结合通道注意力机制学习更具判别力的视觉特征用于烟火检测。实验结果表明,本文提出的EGC-YOLOX烟火检测算法的图像级召回率为95.56%,图像级误报率为4.75%,均优于对比的其他典型轻量级算法,且速度满足实时检测的要求。该算法可在安防和消防领域推广,用于实时火灾监控和预警管理。 展开更多
关键词 烟火检测 EGC-Net YOLOX 全局上下文 注意力机制
在线阅读 下载PDF
结合全局上下文信息的高效人体姿态估计 被引量:3
16
作者 刘豪 吴红兰 房宇轩 《计算机工程》 CAS CSCD 北大核心 2023年第7期102-109,117,共9页
现有的人体姿态估计模型通常使用复杂的网络结构提升关键点检测准确率,忽视了模型参数量和复杂度,使得模型难以部署在资源受限的计算设备上。针对这一问题,构建一个感知全局上下文信息的轻量级人体姿态估计网络模型(GCEHNet)。对HRNet... 现有的人体姿态估计模型通常使用复杂的网络结构提升关键点检测准确率,忽视了模型参数量和复杂度,使得模型难以部署在资源受限的计算设备上。针对这一问题,构建一个感知全局上下文信息的轻量级人体姿态估计网络模型(GCEHNet)。对HRNet进行轻量化改进,使用深度卷积模块代替HRNet结构中的标准3×3残差卷积模块,在保证网络性能的同时大幅度降低模型参数量与复杂度。为了克服卷积神经网络(CNN)在长期语义依赖性建模方面的局限性,使用双支路方法联合CNN与Transformer,将全局位置信息嵌入CNN后期模块,使GCEHNet模型能感知上下文特征信息,从而提升网络性能。设计一种CNN特征与全局位置特征高效融合的策略,通过学习联合特征信息重新分配特征权重,捕获并增强来自不同感受野的特征信息。实验结果表明,GCEHNet模型在MS COCO val2017和test-dev2017数据集上的检测准确率分别达到71.6%和71.3%,相比于HRNet模型,在检测准确率仅损失4.5%的条件下参数量降低了76.4%,在检测准确率和模型复杂度间取得了较好的平衡。 展开更多
关键词 人机交互 人体姿态估计 注意力机制 全局上下文信息 特征融合
在线阅读 下载PDF
从全局到局部:双注意力融合去雾网络 被引量:2
17
作者 杨瑷玮 王华珂 侯兴松 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第7期191-200,共10页
为了处理现有的基于卷积神经网络去雾方法只使用单一的注意力、很难生成细节生动的清晰图像,且容易导致色彩失真的问题,提出了一个全局与局部注意力融合的图像去雾方法,以获得正常清晰度和无色彩失真的去雾图像。首先利用通道注意力将... 为了处理现有的基于卷积神经网络去雾方法只使用单一的注意力、很难生成细节生动的清晰图像,且容易导致色彩失真的问题,提出了一个全局与局部注意力融合的图像去雾方法,以获得正常清晰度和无色彩失真的去雾图像。首先利用通道注意力将输入的有雾图像在通道维度切分为两部分,一部分送入通道像素注意力通道抽取局部特征,另一部分送入Transformer通道学习全局特征,然后利用像素注意力对两个通道学习的特征进行融合,将上述模块作为基本单元组合为一个多级U型去雾网络,增加残差连接缓解上下采样导致的细节信息丢失,最后在网络底层加入一个Transformer模块学习全局信息。在多个公开可用的去雾图像数据集RESIDE SOTS Indoor、RESIDE SOTS Outdoor上测试所提方法的有效性,结果表明:对比经典的去雾方法,所提网络生成的图像细节更丰富并且色彩失真最少;在RESIDE SOTS Outdoor数据集上,相比经典的FFA-Net,峰值信噪比提高1.16 dB,相比GridDehazeNet,峰值信噪比提高3.68 dB。提出的全局与局部注意力融合方法能有效地去除雾霾,提升图像的对比度与清晰度,设计的多级U型去雾网络和残差连接结构能够缓解细节丢失,提升去雾效果,获得清晰的图像。 展开更多
关键词 图像去雾 全局与局部注意力融合 通道像素注意力 Transformer模块
在线阅读 下载PDF
语义引导的全局-局部图神经网络的关系抽取
18
作者 任楚岚 刘长胜 +1 位作者 邹绍强 井立志 《计算机工程与设计》 北大核心 2025年第3期705-711,共7页
为解决实体间距离过长导致关系抽取性能不佳的问题,提出一种基于上下文语义引导的全局-局部图神经网络的关系抽取方法。通过注意力增强神经网络集中不同时间步的单词的重要性和相关性,获取上下文语义引导的信息;构建全局-局部图神经网... 为解决实体间距离过长导致关系抽取性能不佳的问题,提出一种基于上下文语义引导的全局-局部图神经网络的关系抽取方法。通过注意力增强神经网络集中不同时间步的单词的重要性和相关性,获取上下文语义引导的信息;构建全局-局部图神经网络增强全局结构和局部实体之间的交互,通过改进的APPNP(approximate personalized propagation of neural predications)算法增强全局依赖关系;融合两个模块进行关系抽取。在NYT数据集上的实验结果表明,F1达到83.7%,较目前主流方法更具优势,验证了模型的有效性。 展开更多
关键词 关系抽取 上下文语义 注意力增强神经网络 图神经网络 全局结构 局部实体 长距离
在线阅读 下载PDF
基于DenseNet与注意力机制的遥感影像云检测算法 被引量:9
19
作者 刘广进 王光辉 +2 位作者 毕卫华 刘慧杰 杨化超 《自然资源遥感》 CSCD 北大核心 2022年第2期88-96,共9页
遥感影像云检测是遥感影像处理过程中的第一步,针对传统的云检测算法小块薄云检测效果差的问题,该文提出了一种融合注意力机制的密集连接网络遥感影像云检测方法。首先,将自然资源部国土卫星遥感应用中心提供的影像人工勾取云矢量并制... 遥感影像云检测是遥感影像处理过程中的第一步,针对传统的云检测算法小块薄云检测效果差的问题,该文提出了一种融合注意力机制的密集连接网络遥感影像云检测方法。首先,将自然资源部国土卫星遥感应用中心提供的影像人工勾取云矢量并制作云标签,再将其进行顺序裁剪、色彩抖动、旋转等预处理,以增广样本量;然后,将预处理过后的遥感影像及其标签一并输入到以DenseNet作为编码器与解码器的神经网络中,编码器与解码器之间加入级联的空洞卷积模块以增大感受野,双注意力机制与全局上下文建模模块以抑制一些无关的细节信息;最后,经过实验验证表明其精确率可以达到95%以上,交并比可以达到91%以上,较传统云检测算法有较大提高,可以很好地提取小块薄云。 展开更多
关键词 云检测 DenseNet 注意力机制 全局上下文建模模块 空洞卷积
在线阅读 下载PDF
基于上下文信息的遥感图像目标检测 被引量:3
20
作者 梁礼明 李仁杰 +1 位作者 董信 朱晨锟 《电光与控制》 CSCD 北大核心 2023年第10期89-94,共6页
针对遥感图像中背景复杂多样、目标密集和尺度差异性大,容易造成小目标漏检和误检的问题,以YOLOv5s算法为网络基础框架,提出一种基于上下文信息的遥感图像目标检测算法。首先,设计上下文模块(CM)并添加在主干网络,增大目标区域特征的感... 针对遥感图像中背景复杂多样、目标密集和尺度差异性大,容易造成小目标漏检和误检的问题,以YOLOv5s算法为网络基础框架,提出一种基于上下文信息的遥感图像目标检测算法。首先,设计上下文模块(CM)并添加在主干网络,增大目标区域特征的感知范围,获取更多的上下文信息,提升模型对小尺度目标的检测能力;其次,在特征主干网络中引入坐标注意力(CA)模块,加强模型对浅层网络中目标位置信息的识别能力;最后,将空间金字塔池化模块替换为空洞空间卷积金字塔(ASPP)模块,实现全局信息和局部信息相融合,进一步增强小目标的语义信息。实验结果表明,在RSOD数据集上,改进后算法的mAP_(50)为97.9%,相比原YOLOv5s算法提高了1.7个百分点;FPS达到71帧/s,满足实时性检测的要求。相比其他检测算法,改进后算法具有更低的漏检率和误检率,检测性能更加优秀。 展开更多
关键词 遥感图像 上下文模块 坐标注意力模块 空洞空间卷积金字塔模块
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部