期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
一种基于全卷积神经网络的空中目标战术意图识别模型 被引量:2
1
作者 李乐民 宋亚飞 +1 位作者 王鹏 王科 《空军工程大学学报》 CSCD 北大核心 2024年第5期98-106,共9页
针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战... 针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战意图数据的时序特征。通过消融实验和对比实验结果表明,MLSTM-FCN模型在意图识别准确率、反应速度和抗干扰能力方面明显优于现有的空中目标意图识别模型,取得了sota的结果,为指挥员在进行空中作战决策时提供更有效的依据。 展开更多
关键词 意图识别 空中目标 深度学习 卷积网络 长短记忆神经网络 压缩与激励模块
在线阅读 下载PDF
基于全卷积神经网络的纵横波分解技术研究及其在弹性波成像中的应用
2
作者 许凯 陈祖庆 +3 位作者 孙振涛 张广智 康家光 王静波 《石油物探》 CSCD 北大核心 2024年第6期1126-1137,共12页
纵波(P)和横波(S)波场分解对弹性介质中的多分量地震波成像至关重要,但是常规P-S波波场分解方法精度相对较低,且存在成像假象的问题。为此,构建了一种基于全卷积神经网络(FCN)的网络结构,用于二维各向同性弹性介质地震波场的P-S波波场... 纵波(P)和横波(S)波场分解对弹性介质中的多分量地震波成像至关重要,但是常规P-S波波场分解方法精度相对较低,且存在成像假象的问题。为此,构建了一种基于全卷积神经网络(FCN)的网络结构,用于二维各向同性弹性介质地震波场的P-S波波场分解。该网络由全卷积神经网络构建,使用合成波场快照进行训练,训练完成的网络类似空间滤波器,可实现高精度的P-S波波场分解。不同于基于傅里叶变换的P-S波波场分解方法,该方法可以在波场任意空间位置处开展P-S波波场分解,因此适用于面向目标的地震成像。合成数据的计算示例表明,基于全卷积神经网络的纵横波波场分解方法可有效分解P波和S波波场,且精度高于其他空间域分解方法。弹性波逆时偏移成像结果表明,使用基于全卷积神经网络(FCN)的P-S波波场分解方法所获得的基于P波和S波的地震波成像结果,可有效减少速度界面处的成像假象,提高复杂地质条件下的多波成像精度。 展开更多
关键词 弹性波场 P-S波波场分解 卷积神经网络(fcn) 弹性波成像
在线阅读 下载PDF
全卷积神经网络在垃圾土勘察中的应用 被引量:1
3
作者 徐四一 张旭 《岩土工程技术》 2024年第1期75-77,共3页
垃圾土与原土壤往往存在电阻率差异,常用垃圾土探测方法是高密度电阻率法和时域电磁法,而对反演结果的人工解译效率低,且准确性难以保证。通过全卷积神经网络在垃圾土勘察中的应用,识别某拆后绿地改造工程地下建构筑物垃圾土探测数据,... 垃圾土与原土壤往往存在电阻率差异,常用垃圾土探测方法是高密度电阻率法和时域电磁法,而对反演结果的人工解译效率低,且准确性难以保证。通过全卷积神经网络在垃圾土勘察中的应用,识别某拆后绿地改造工程地下建构筑物垃圾土探测数据,确定垃圾土范围,表明了本方法的有效性、实用性和可靠性,为垃圾土勘察、土方量计算和改善土地性状等提供参考。 展开更多
关键词 卷积神经网络 垃圾土 高密度电阻率法 异常识别
在线阅读 下载PDF
基于改进全卷积神经网络的体育运动员动作识别方法 被引量:1
4
作者 郝俊峰 《数字通信世界》 2024年第7期55-57,共3页
传统的体育运动员动作识别方法,直接对运动员动作识别结果进行输出未对运动区域进行提取,识别精度低。该文提出基于改进全卷积神经网络的体育运动员动作识别方法,使用摄像机对体育运动员动作图像进行采集,并对图像进行基于改进全卷积神... 传统的体育运动员动作识别方法,直接对运动员动作识别结果进行输出未对运动区域进行提取,识别精度低。该文提出基于改进全卷积神经网络的体育运动员动作识别方法,使用摄像机对体育运动员动作图像进行采集,并对图像进行基于改进全卷积神经网络的运动区域提取,体育运动员动作识别流程,输入动作图像并对结果进行输出,实现基于改进全卷积神经网络的体育运动员动作识别。实验结果表明该研究方法识别精度高,具有一定优势。 展开更多
关键词 改进卷积神经网络 体育运动 动作识别 识别方法
在线阅读 下载PDF
基于全卷积神经网络的非对称并行语义分割模型 被引量:12
5
作者 李宝奇 贺昱曜 +1 位作者 何灵蛟 强伟 《电子学报》 EI CAS CSCD 北大核心 2019年第5期1058-1064,共7页
针对RGB图像具有丰富的色彩细节特征,红外图像对目标轮廓、尺寸、边界等外形特征有较高敏感度的特点,提出了一种非对称并行语义分割模型APFCN(Asymmetric Parallelism Fully Convolutional Networks).APFCN上路设计了一个卷积核尺寸非... 针对RGB图像具有丰富的色彩细节特征,红外图像对目标轮廓、尺寸、边界等外形特征有较高敏感度的特点,提出了一种非对称并行语义分割模型APFCN(Asymmetric Parallelism Fully Convolutional Networks).APFCN上路设计了一个卷积核尺寸非统一的五层空洞卷积网络来提取红外图像目标高层轮廓特征;下路沿用卷积加池化网络提取RGB图像三个尺度上的细节特征;后端将红外图像高层特征与RGB图像三个尺度的细节特征进行融合,并将4倍上采样后的融合特征作为语义分割输出.结果表明,APFCN在像素精度和交并比等方面均优于FCN(输入为RGB图像或红外图像),适用于背景一致下地面目标的语义分割任务. 展开更多
关键词 语义分割 卷积神经网络 非对称并行卷积神经网络 空洞卷积 空洞率
在线阅读 下载PDF
区域生长全卷积神经网络交互分割肝脏CT图像 被引量:6
6
作者 张丽娟 章润 +2 位作者 李东明 李阳 王晓坤 《液晶与显示》 CAS CSCD 北大核心 2021年第9期1294-1304,共11页
由于医疗图像质量差、对比度低、患者之间差异大导致全自动分割方法很难获得足够准确、鲁棒的结果。为了解决全自动分割方法的局限性,本文提出一种基于神经网络改进的区域生长法,并与全卷积神经网络相结合对肝脏CT图像进行交互式分割。... 由于医疗图像质量差、对比度低、患者之间差异大导致全自动分割方法很难获得足够准确、鲁棒的结果。为了解决全自动分割方法的局限性,本文提出一种基于神经网络改进的区域生长法,并与全卷积神经网络相结合对肝脏CT图像进行交互式分割。首先对图像进行预处理,突出待分割肝脏区域;接着计算像素在不同边缘检测算子下的梯度值作为该像素的特征,形成像素特征向量训练网络该网络以一对像素特征向量为输入,以两像素的关联度系数为输出;然后将训练好的神经网络模型作为区域生长算法的生长准则,手动交互选取一点产生分割结果;最后将分割结果作为原图的交互信息和原图灰度通道连接在一起一同输入全卷积神经网络。实验结果表明平均Dice系数达到96.69%,像素准确率达到99.62%,平均交并比达到96.65%。不同的腹部CT图像序列中肝脏的分割结果表明,该方法能精确提取肝脏区域,满足临床应用的需求。 展开更多
关键词 卷积神经网络 区域生长法 交互式分割
在线阅读 下载PDF
基于全卷积神经网络的遥感图像海面目标检测 被引量:8
7
作者 喻钧 康秦瑀 +3 位作者 陈中伟 初苗 胡志毅 姚红革 《弹箭与制导学报》 北大核心 2020年第5期15-19,23,共6页
针对通常的神经网络算法在检测遥感图像海面目标时存在精确率低、漏检概率高的问题,改进了一种基于YOLOv3全卷积神经网络的遥感图像海面目标检测方法。首先根据海面目标的宽高比例,利用Kmeans++聚类算法,确定出适合于数据集的anchor box... 针对通常的神经网络算法在检测遥感图像海面目标时存在精确率低、漏检概率高的问题,改进了一种基于YOLOv3全卷积神经网络的遥感图像海面目标检测方法。首先根据海面目标的宽高比例,利用Kmeans++聚类算法,确定出适合于数据集的anchor box值;接着采用FPN思想进行特征融合;最后,选用GIOU作为坐标预测的损失函数,进一步优化检测结果。实验表明:文中方法在遥感图像海面目标检测中的平均精确率为90.82%,相比于其他算法平均提高了5.34%。 展开更多
关键词 YOLOv3 卷积神经网络 遥感图像 目标检测
在线阅读 下载PDF
基于全卷积神经网络的大坝变形监测数据粗差识别方法研究 被引量:5
8
作者 齐智勇 孙辅庭 +3 位作者 毛延翩 周建波 张春辉 李秋炎 《水电能源科学》 北大核心 2023年第3期87-90,共4页
针对大坝变形监测数据普遍存在粗差的问题,采用全卷积神经网络(FCN)模型对人工标记数据集进行表征学习的方法实现变形粗差数据识别的人工智能模拟;在此基础上,利用Python和Tensorflow框架构建了用于变形监测数据粗差识别的FCN模型并以... 针对大坝变形监测数据普遍存在粗差的问题,采用全卷积神经网络(FCN)模型对人工标记数据集进行表征学习的方法实现变形粗差数据识别的人工智能模拟;在此基础上,利用Python和Tensorflow框架构建了用于变形监测数据粗差识别的FCN模型并以人工标注数据集进行模型训练;最后,以训练得到的最优模型对某重力坝变形监测数据进行粗差识别应用。结果表明,经训练的FCN模型能够较准确地识别大坝变形监测数据中的粗差值,提高了大坝安全管理效率。 展开更多
关键词 监测 粗差 卷积神经网络 大坝安 人工智能
在线阅读 下载PDF
基于全卷积神经网络的卫星遥感图像云检测方法 被引量:13
9
作者 高军 荆益国 《红外技术》 CSCD 北大核心 2019年第7期607-615,共9页
云检测作为遥感影像数据处理中的重要组成部分,在气候分析等各个方面起到了重要的作用。在云检测研究中,无论是应用广泛的阈值法或是基于模式识别的方法,以及在二者基础上的综合分析法。这些方法大多都依赖于单一类型的遥感数据来源,且... 云检测作为遥感影像数据处理中的重要组成部分,在气候分析等各个方面起到了重要的作用。在云检测研究中,无论是应用广泛的阈值法或是基于模式识别的方法,以及在二者基础上的综合分析法。这些方法大多都依赖于单一类型的遥感数据来源,且在特征提取方面十分依赖先验知识,受主观影响较大。本文利用两种不同类型“风云”系列气象遥感卫星的可见光红外扫描辐射计(Visible andInfrared Radiometer,VIRR)以及多通道扫描成像辐射计(Advanced Geosynchronous Radiation Imager,AGRI)数据,以全卷积神经网络为基础进行云检测,利用其自动提取深层隐含特征等特性,极大保留特征信息。最后结合全连接条件随机场模型进行云系边缘优化。实验结果表明,该算法分别应用于以上两种不同类型遥感影像数据,都较好地完成了云像元和非云像元的分离。 展开更多
关键词 云检测 遥感影像 风云卫星 卷积神经网络
在线阅读 下载PDF
基于全卷积神经网络的板条多压头成形回弹预测及模具设计
10
作者 朱凌 董金辉 梁棋钰 《中国舰船研究》 CSCD 北大核心 2023年第6期197-207,共11页
[目的]在船体曲面板的冷成形过程中,回弹是影响成形精度的主要因素,为提高板条成形质量,需研究回弹预测方法以获得合适的回弹控制方式,进而指导模具设计。[方法]基于全卷积神经网络(FCN)对回弹图片进行像素级计算和回归计算,从而实现对... [目的]在船体曲面板的冷成形过程中,回弹是影响成形精度的主要因素,为提高板条成形质量,需研究回弹预测方法以获得合适的回弹控制方式,进而指导模具设计。[方法]基于全卷积神经网络(FCN)对回弹图片进行像素级计算和回归计算,从而实现对每个成形位置的回弹量预测。首先,利用ABAQUS 2019建立有限元模型,并通过实验结果进行准确性的对比验证;然后,采用验证后的有限元方法计算获取神经网络训练样本集,将板条几何信息作为神经网络的输入,并基于不同卷积层结构采用TensorFlow深度学习框架来搭建全卷积网络模型;最后,对比分析不同神经网络的优劣,并将最优网络应用于模具设计。[结果]算例分析结果显示:FCN模型预测回弹量的最大误差为8.49%,具有较高的准确度,其中FCN32的精度最高;FCN模型可以实现模具形状的一次性设计,计算时间仅为0.5 s,最大误差仅为1.00%,显著提高了计算效率。[结论]全卷积神经网络算法提供了一种快速高效的板条回弹预测方法,以及快速设计模具形状的新思路。 展开更多
关键词 多压头成形 卷积神经网络 回弹预测 板条成形
在线阅读 下载PDF
基于全卷积神经网络的植物叶片分割算法 被引量:4
11
作者 胡静 陈志泊 +2 位作者 杨猛 张荣国 崔亚稷 《北京林业大学学报》 CAS CSCD 北大核心 2018年第11期131-136,共6页
【目的】植物叶片分割旨在从背景中分割出叶片区域,去除背景对象干扰。这对植物病害识别和物种鉴定具有重大意义。【方法】本文设计了基于全卷积神经网络的植物叶片分割算法。首先,目标函数用对数逻辑函数代替复杂的Softmax多类预测函数... 【目的】植物叶片分割旨在从背景中分割出叶片区域,去除背景对象干扰。这对植物病害识别和物种鉴定具有重大意义。【方法】本文设计了基于全卷积神经网络的植物叶片分割算法。首先,目标函数用对数逻辑函数代替复杂的Softmax多类预测函数,从而将分割任务转化为适合于植物叶片分割的二分类问题;其次,把批归一化技术引入全卷积神经网络,从而改善网络整体的收敛性。最后,针对当前植物叶片分割研究中缺乏评估指标的状况,设计了新的评估协议——受试者工作特征曲线,该曲线反映了不同阈值情况下植物叶片图像分割的召回率与误报率之间的变化情况。【结果】本文提出的算法降低了全卷积神经网络的参数复杂度,改善了网络的收敛性。实验结果表明,该方法比Leafsnap提到的基于颜色的分割方法更完整地分割了植物叶片区域;提出的ROC曲线能够充分评估植物叶片的分割性能。【结论】与传统方法相比,基于深度学习的植物叶片分割方法实现了输入图像的端对端处理,无需图像转换、噪声滤波和形态运算等预处理技术,因此在植物叶片分割上具有可行性。 展开更多
关键词 深度学习 卷积神经网络 植物叶片分割
在线阅读 下载PDF
基于全卷积神经网络的SAR图像目标分类 被引量:5
12
作者 陈永生 喻玲娟 谢晓春 《雷达科学与技术》 北大核心 2018年第3期242-248,共7页
近年来,卷积神经网络(Convolutional Neural Network,CNN)在合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标分类中取得了较好的分类结果。CNN结构中,前面若干层由交替的卷积层、池化层堆叠而成,后面若干层为全连接层。全卷积神经... 近年来,卷积神经网络(Convolutional Neural Network,CNN)在合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标分类中取得了较好的分类结果。CNN结构中,前面若干层由交替的卷积层、池化层堆叠而成,后面若干层为全连接层。全卷积神经网络(All Convolutional Neural Network,A-CNN)是对CNN结构的一种改进,其中池化层和全连接层都用卷积层代替,该结构已在计算机视觉领域被应用。针对公布的MSTAR数据集,提出了基于A-CNN的SAR图像目标分类方法,并与基于CNN的SAR图像分类方法进行对比。实验结果表明,基于A-CNN的SAR图像目标分类正确率要高于基于CNN的分类正确率。 展开更多
关键词 卷积神经网络 卷积神经网络 合成孔径雷达 目标分类
在线阅读 下载PDF
基于全卷积神经网络与条件随机场的车道识别方法 被引量:4
13
作者 叶子豪 孙锐 王慧慧 《光电工程》 CAS CSCD 北大核心 2019年第2期34-45,共12页
本文针对传统车道识别方法在复杂路面中自适应能力差的特点,基于图像分割技术提出了一种基于全卷积神经网络与条件随机场的车道识别方法。该方法通过大量数据的训练,使神经网络模型可以识别出车道,并且再通过条件随机场使得分割出来的... 本文针对传统车道识别方法在复杂路面中自适应能力差的特点,基于图像分割技术提出了一种基于全卷积神经网络与条件随机场的车道识别方法。该方法通过大量数据的训练,使神经网络模型可以识别出车道,并且再通过条件随机场使得分割出来的车道覆盖面积及车道边缘的处理更加完善。同时,本文为了解决高速公路中对检测实时性的高要求,设计了一个全卷积神经网络,该网络结构简单,只有13万个参数,并且做出如下三点改进:采用BN算法提高网络的泛化能力及收敛速度;采用了LeakyReLU激活函数取代了一般使用的relu或者sigmoid激活函数,并且采用Nadam作为网络的优化器使得该网络具有更好的鲁棒性;采用条件随机场作为后端处理解决车道边缘处分割不足并且加大了车道覆盖面积。最后本文为了解决城市道路检测中道路环境复杂的问题,利用FCN-16s网络模型加条件随机场的后端处理实现了复杂城市道路的识别。实验证明,在面对高速公路的高速及车道简单环境下,本文设计的网络模型更具有实时性且足够胜任车道的识别。在面对城市道路的复杂环境下,FCN-16s模型加条件随机场更能精确地识别出车道,并在KITTI道路检测基准上取得不错的结果。 展开更多
关键词 车道检测 卷积神经网络 条件随机场 网络优化
在线阅读 下载PDF
基于全卷积神经网络的国内常见交通警告标志识别 被引量:8
14
作者 刘璐 孟品超 《长春理工大学学报(自然科学版)》 2020年第2期135-142,共8页
交通警告标志是用于警告驾驶员和行人注意危险地点的标志,为了降低由于忽略交通警告标志而引发的交通事故发生率,提出了一种基于全卷积神经网络的交通警告标志检测方法。首先,为了增强模型的泛化能力,对图像进行了数据增强处理;其次,通... 交通警告标志是用于警告驾驶员和行人注意危险地点的标志,为了降低由于忽略交通警告标志而引发的交通事故发生率,提出了一种基于全卷积神经网络的交通警告标志检测方法。首先,为了增强模型的泛化能力,对图像进行了数据增强处理;其次,通过卷积层与残差连接层交替连接来对图片数据进行颜色、形状等特征提取;最后,通过特征金字塔网络结构进行跨尺度预测,在不同尺度上预测物体位置坐标和类别概率。实验结果表明,该方法利用全卷积神经网络的深度学习能力,实现了对交通警告标志的快速、准确识别。 展开更多
关键词 交通警告标志 卷积神经网络 特征提取 深度学习
在线阅读 下载PDF
基于全卷积神经网络的红外弱小目标检测 被引量:1
15
作者 李响 段萌 张学峰 《电子质量》 2022年第5期39-44,共6页
为解决传统红外弱小目标检测虚警率较高的问题,提出了一种基于局部均值差分和深度神经网络的红外弱小目标检测算法。首先,利用改进的局部均值差分算法从输入图像中提取候选目标区域;然后设计了基于全卷积神经网络的分类器对候选区域进... 为解决传统红外弱小目标检测虚警率较高的问题,提出了一种基于局部均值差分和深度神经网络的红外弱小目标检测算法。首先,利用改进的局部均值差分算法从输入图像中提取候选目标区域;然后设计了基于全卷积神经网络的分类器对候选区域进行判别。网络中引入了参数化非线性激活层,有助于提升网络的分类性能。实验表明该文算法对典型天空和地面背景下红外弱小目标的准确率和召回率分别达到了100%和99.6%,明显优于传统算法。 展开更多
关键词 红外弱小目标检测 深度学习 卷积神经网络 参数化非线性激活层 均值差分
在线阅读 下载PDF
全卷积神经网络应用于SAR目标检测 被引量:3
16
作者 张椰 朱卫纲 吴戌 《电讯技术》 北大核心 2018年第11期1244-1251,共8页
在合成孔径雷达(SAR)图像目标检测中,由于场景杂波的复杂多变,对背景杂波统计模型估计难度增加,从而导致多数检测器容易受到背景杂波的干扰。针对如何避免场景杂波对目标检测干扰的问题,提出了一种基于全卷积神经网络的SAR目标检测模型... 在合成孔径雷达(SAR)图像目标检测中,由于场景杂波的复杂多变,对背景杂波统计模型估计难度增加,从而导致多数检测器容易受到背景杂波的干扰。针对如何避免场景杂波对目标检测干扰的问题,提出了一种基于全卷积神经网络的SAR目标检测模型。该模型将目标检测任务转化为像素分类问题,利用卷积神经网络对数据集中目标像素特征和背景杂波像素的先验信息进行自主学习,有效减少了虚警目标的数量;通过对目标及其阴影区域的联合检测,提高了目标的检测概率。对多个不同场景图像进行测试,实验结果表明提出的检测模型具有良好的检测性能和鲁棒性能,与传统恒虚警检测算法相比,在无需考虑背景杂波统计模型前提下有效降低了虚警概率。 展开更多
关键词 SAR图像 目标检测 卷积神经网络 像素分类 迁移学习
在线阅读 下载PDF
基于全卷积神经网络复杂场景的车辆分割研究 被引量:3
17
作者 张乐 张志梅 +1 位作者 刘堃 王国栋 《青岛大学学报(工程技术版)》 CAS 2019年第2期13-20,共8页
针对目前存在的复杂交通场景中车辆分割精度不足的问题,本文提出了一种基于全卷积神经网络对图像中车辆进行分割的方法。在VGG16Net基础上,将全连接层改为卷积层,为获得更精细的边缘分类结果,减少了部分卷积层,并融合浅层和深层特征,同... 针对目前存在的复杂交通场景中车辆分割精度不足的问题,本文提出了一种基于全卷积神经网络对图像中车辆进行分割的方法。在VGG16Net基础上,将全连接层改为卷积层,为获得更精细的边缘分类结果,减少了部分卷积层,并融合浅层和深层特征,同时,为提高交通环境下车辆的分割精度,减少其他类别目标的干扰,将对车辆目标的分割问题改为基于像素的二分类问题,为提高网络的训练速度,采用Adam优化算法对网络进行训练。实验结果表明,与现有的全卷积神经网络分割效果相比,该网络对复杂交通场景下的车辆分割精度明显提高。该研究在智能交通方面具有较好的应用前景。 展开更多
关键词 卷积神经网络 车辆分割 Adam优化算法 深度学习
在线阅读 下载PDF
基于全卷积神经网络的输送带撕裂检测方法 被引量:3
18
作者 游磊 朱兴林 +1 位作者 陈雨 罗明华 《工矿自动化》 北大核心 2022年第9期16-24,共9页
针对现有输送带撕裂检测方法存在井下可见光成像质量差、缺少撕裂物理尺寸测量手段、泛化能力差等问题,提出了一种基于全卷积神经网络的输送带撕裂检测方法。该方法基于线结构光成像原理采集图像,可有效解决煤矿井下光照条件差的问题;... 针对现有输送带撕裂检测方法存在井下可见光成像质量差、缺少撕裂物理尺寸测量手段、泛化能力差等问题,提出了一种基于全卷积神经网络的输送带撕裂检测方法。该方法基于线结构光成像原理采集图像,可有效解决煤矿井下光照条件差的问题;采用改进最大值法进行线激光条纹检测,可有效排除条纹断点,精确提取条纹,并拟合出缺失点;选用全卷积神经网络中的U-net网络对线激光条纹进行撕裂分割,将撕裂检测问题转换成语义分割问题,并通过降维对U-net网络进行优化,从而减少参数量和计算量;将分割结果反投影回原始图像,利用线结构光标定数据完成撕裂物理尺寸测量。实验结果表明:改进最大值法可有效处理线激光条纹断点区域,无误检和漏检,性能优于Steger法和灰度重心法;U-net网络收敛速度快于SegNet和FCNs网络,迭代的稳定性较强,评价指标最优,U-net4网络性能优于U-net3和U-net5。在验证集上的检测结果表明,撕裂检测的召回率为96.09%,精确率为96.85%。在实验平台的测量结果表明,撕裂物理尺寸测量的最大相对误差为-13.04%。 展开更多
关键词 带式输送机 输送带撕裂检测 撕裂物理尺寸 线结构光 卷积神经网络 U-net网络 语义分割
在线阅读 下载PDF
基于注意力机制的全卷积神经网络模型 被引量:1
19
作者 刘孟轩 张蕊 +2 位作者 曾志远 金玮 武益超 《现代信息科技》 2021年第23期92-95,共4页
全卷积神经网络FCN-8S在进行多尺度特征融合时,由于未能考虑不同尺度特征各自的特点进行充分融合,导致分割结果精度较低,针对这一问题,文章提出了一种基于注意力机制的多尺度特征融合的全卷积神经网络模型。该模型基于注意力机制对FCN-8... 全卷积神经网络FCN-8S在进行多尺度特征融合时,由于未能考虑不同尺度特征各自的特点进行充分融合,导致分割结果精度较低,针对这一问题,文章提出了一种基于注意力机制的多尺度特征融合的全卷积神经网络模型。该模型基于注意力机制对FCN-8S中的不同尺度特征进行加权特征融合,以相互补充不同尺度特征包含的不同信息,进而提升网络的分割效果。文章模型在公共数据集PASCAL VOC2012和Cityscapes上进行验证,MIoU相对于FCN-8S分别提升了2.2%和0.8%。 展开更多
关键词 语义分割 卷积神经网络 注意力机制 特征融合
在线阅读 下载PDF
全卷积神经网络用于识别病理图片中的细胞核 被引量:1
20
作者 张绪森 潘君 孔非 《数字通信世界》 2020年第1期281-281,共1页
目的 :尝试使用深度学习的方法识别小鼠肿瘤切片中的细胞核。方法 :选取癌细胞,采取注射方式将癌细胞注入健康小鼠体内,利用小鼠长出的肿瘤组织制作HE染色切片,使用肿瘤组织HE染色切片的图片及其细胞核的识别图片对全卷积神经网络(Fully... 目的 :尝试使用深度学习的方法识别小鼠肿瘤切片中的细胞核。方法 :选取癌细胞,采取注射方式将癌细胞注入健康小鼠体内,利用小鼠长出的肿瘤组织制作HE染色切片,使用肿瘤组织HE染色切片的图片及其细胞核的识别图片对全卷积神经网络(Fully Convolutional Networks,FCN)进行训练,并将训练出的深度学习模型用于识别HE染色切片中的细胞核。结论 :使用训练好的深度学习模型识别病理图片中的细胞核可以显著提高识别效率及准确率,并且本文训练出的FCN模型达到了FCN研发团队提出的标准水平。 展开更多
关键词 深度学习 卷积神经网络 HE染色切片 细胞核
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部