期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于anchor-free的光学遥感舰船关重部位检测算法 被引量:3
1
作者 张冬冬 王春平 付强 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第4期1365-1374,共10页
针对基于深度学习的遥感舰船检测算法存在精细化程度不足、检测效率低的问题,提出一种基于anchor-free的光学遥感舰船关重部位检测算法。所提算法以全卷积的单阶段目标检测(FCOS)算法为基准,在主干网络中引入全局上下文模块,提高网络的... 针对基于深度学习的遥感舰船检测算法存在精细化程度不足、检测效率低的问题,提出一种基于anchor-free的光学遥感舰船关重部位检测算法。所提算法以全卷积的单阶段目标检测(FCOS)算法为基准,在主干网络中引入全局上下文模块,提高网络的特征表达能力;为更好地描述目标的方向性,在预测阶段构建了具有方向表征能力的回归分支;对中心度函数进行优化,使其具备方向感知和自适应能力。实验结果表明:在自建舰船关重部位数据集和HRSC2016上,所提算法的平均精度(AP)比FCOS算法有显著提升;与其他算法相比,所提算法在检测速度和检测精度上均表现优越,具有较高的检测效率。 展开更多
关键词 深度学习 遥感图像 anchor-free 舰船检测 关重部位检测 全卷积单阶段检测
在线阅读 下载PDF
基于改进FCOS的拥挤行人检测算法 被引量:10
2
作者 齐鹏宇 王洪元 +2 位作者 张继 朱繁 徐志晨 《智能系统学报》 CSCD 北大核心 2021年第4期811-818,共8页
针对大规模拥挤场景视频中行人目标小、行人遮挡和行人交叠而导致的检测困难等问题,本文将逐像素预测目标检测框架—全卷积单阶段目标检测FCOS(fully convolutional one-stage object detection)应用于行人检测,提出一种改进的主干网络... 针对大规模拥挤场景视频中行人目标小、行人遮挡和行人交叠而导致的检测困难等问题,本文将逐像素预测目标检测框架—全卷积单阶段目标检测FCOS(fully convolutional one-stage object detection)应用于行人检测,提出一种改进的主干网络用于提取行人特征,通过增加尺度回归实现目标行人的多尺度检测,同时减少其他特征层检测的目标数量,进而提升行人检测的能力。在拥挤行人场景数据集CrowdHuman和小目标行人数据集Caltech上的大量实验结果表明,和目前先进的方法相比,本文的方法对行人的检测精度有所提升,特别是对于小目标行人检测。与原始FCOS算法相比,在CrowdHuman上平均精度提升接近15%,丢失率降低接近33.0%;在Caltech上的平均精度提升2%。在复杂拥挤场景下的实际应用也证明本文方法的有效性。 展开更多
关键词 行人检测 多尺度检测 卷积阶段目标检测 拥挤行人场景 训练策略 小目标检测 尺度回归 逐像素预测
在线阅读 下载PDF
HourglassNet:一种用于遥感目标检测的改进FCOS算法 被引量:2
3
作者 原瑜蔓 白宏阳 +2 位作者 郭宏伟 付宏建 李泽超 《南京理工大学学报》 CAS CSCD 北大核心 2022年第6期719-727,741,共10页
针对遥感图像中背景复杂、目标分布密集、目标尺度形态多样等问题,该文在单阶段全卷积(FCOS)目标检测模型的基础上,基于沙漏特征金字塔并且与多尺度上下文场景结合,提出了沙漏网(HourglassNet)。针对卷积神经网络(CNN)中不同深度语义信... 针对遥感图像中背景复杂、目标分布密集、目标尺度形态多样等问题,该文在单阶段全卷积(FCOS)目标检测模型的基础上,基于沙漏特征金字塔并且与多尺度上下文场景结合,提出了沙漏网(HourglassNet)。针对卷积神经网络(CNN)中不同深度语义信息和空间信息不均衡的问题,提出了一种沙漏特征金字塔,通过将多尺度特征缩放至中间尺度进行融合和优化以获得全局特征。基于注意力机制将全局特征向不同尺度特征传递,在抑制无关特征的同时增强了有效特征,实现了对多尺度特征的补偿。为了将高层特征的语义信息更加充分地融入不同尺寸的特征图内,设计了多尺度上下文融合模块。利用适当的感受野提取高层特征的上下文信息,提升了特征的鲁棒性和辨识性。分别在DOTA v1.5和NWPU VHR-10公开遥感图像数据集上进行了性能对比与消融实验。结果表明,该文算法的均值平均精度(mAP)相比于FCOS在DOTA v1.5和NWPU VHR-10数据集上分别提升了4.3%和3.4%,且检测性能优于YOLOv3等其它对比方法。 展开更多
关键词 阶段卷积目标检测 遥感图像 沙漏特征金字塔 多尺度特征 上下文场景 卷积神经网络 注意力机制 特征融合
在线阅读 下载PDF
基于FCOS算法改进的交通标志检测 被引量:1
4
作者 陈哲 程艳云 《计算机工程与设计》 北大核心 2022年第11期3271-3278,共8页
针对道路中交通标志检测存在的检测对象目标小、自然环境干扰等问题,提出基于全卷积单阶段目标检测(fully convolutional one-stage object detection,FCOS)算法改进的多尺度特征融合的单阶段无锚检测器。以FCOS算法为框架,在特征提取... 针对道路中交通标志检测存在的检测对象目标小、自然环境干扰等问题,提出基于全卷积单阶段目标检测(fully convolutional one-stage object detection,FCOS)算法改进的多尺度特征融合的单阶段无锚检测器。以FCOS算法为框架,在特征提取网络中通过引入注意力模块CBAM(convolutional block attention module)对数据集进行特征提取,在该网络中引入模型效果优于Re LU的swish激活函数;在特征加强网络中进行轻量级的多尺度特征融合。在TT100K数据集上的实验结果表明,该算法的F1-measure达到了83.2%,检测速度达到了24.39FPS,验证了改进后网络的可行性和有效性。 展开更多
关键词 卷积阶段目标检测 交通标志检测 注意力模块 swish激活函数 多尺度特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部