Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane h...Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane heuristic based artificial immune network classification algorithm (DHPA1NC) is proposed. DHPAINC taboos the inner regions of the class domain, thus, the antibody generation is limited near the class domain boundary. Then, the antibodies are evaluated by their recognition abilities, and the antibodies of low recognition abilities are removed to avoid over-fitting. Finally, the high quality antibodies tend to be stable in the immune network. The algorithm was applied to two simulated datasets classification, and the results show that the decision hyper planes determined by the antibodies fit the class domain boundaries well. Moreover, the algorithm was applied to UCI datasets classification and emotional speech recognition, and the results show that the algorithm has good performance, which means that DHPAINC is a promising classifier.展开更多
Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the dat...Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast.展开更多
A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the...A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.展开更多
基金Foundation item: Projects(61170199, 60874070) supported by the National Natural Science Foundation of China Project(11A004) supported by the Major Project of Education Department in Hunan Province, China Project(2010GK3067) supported by Science and Technology Planning of Hunan Province, China
文摘Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane heuristic based artificial immune network classification algorithm (DHPA1NC) is proposed. DHPAINC taboos the inner regions of the class domain, thus, the antibody generation is limited near the class domain boundary. Then, the antibodies are evaluated by their recognition abilities, and the antibodies of low recognition abilities are removed to avoid over-fitting. Finally, the high quality antibodies tend to be stable in the immune network. The algorithm was applied to two simulated datasets classification, and the results show that the decision hyper planes determined by the antibodies fit the class domain boundaries well. Moreover, the algorithm was applied to UCI datasets classification and emotional speech recognition, and the results show that the algorithm has good performance, which means that DHPAINC is a promising classifier.
基金Project(70373017) supported by the National Natural Science Foundation of China
文摘Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast.
基金Project(2008BA00400)supported by the Foundation of Department of Science and Technology of Jiangxi Province,China
文摘A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.